Skip to main content
Log in

Hormone-Induced Gene Expression During Gravicurvature of Brassica Roots

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To investigate the spatial and temporal dependence of hormonal regulation during gravitropism, we compared the effects of root cap application of indole-3-acetic acid (IAA) and abscisic acid (ABA) with gene expression changes occurring naturally during gravitropic reaction of Brassica rapa roots. The expression of auxin, ABA, and metabolism-related genes in the tip, elongation zone, and maturation zone varied with time, location, and hormone concentration and characterized polar auxin transport. IAA was transported readily shootward and inhibited growth more than ABA. Expression of PIN3 and IAA5 in the elongation zone showed downregulation on the convex but upregulation on the concave side. Both PIN7 and IAA5 responded near maximally to 10−8 M IAA within 30 min, suggesting that auxin activates its own transport system. Ubiquitin 1 (UBQ1) responded after a lag time of more than 1 h to IAA. The metabolic control gene Phosphoenolpyruvate carboxylase 1 (PEPC1) was more sensitive to ABA but upregulated by high concentrations of either hormone. The time course and duration of gene activation suggests that ABA is not involved in gravitropic curvature, differential elongation is not simply explained by IAA-induced upregulation, and that reference genes are sensitive to auxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible messenger-RNAs in Arabidopsis thaliana. J Mol Biol 251:533–549. doi:10.1006/jmbi.1995.0454

    Article  CAS  PubMed  Google Scholar 

  • Åberg B (1978) Plant-growth regulators. 36. Further indole derivatives. Swed J Agric Res 8:133–138

    Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120. doi:10.1016/j.cell.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  • Andreae WA, Venis MA, Jursic F, Dumas T (1968) Does ethylene mediate root growth inhibition by indole-3-acetic acid? Plant Physiol 43:1375–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Band LR, Wells DM, Larrieu A, Sun JY, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Peret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman TC, Pridmore TP, King JR, Vernoux T, Bennett MJ (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci USA 109:4668–4673. doi:10.1073/pnas.1201498109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baskin TI, Peret B, Baluska F, Benfey PN, Bennett M, Forde BG, Gilroy S, Helariutta Y, Hepler PK, Leyser O, Masson PH, Muday GK, Murphy AS, Poethig S, Rahman A, Roberts K, Scheres B, Sharp RE, Somerville C (2010) Shootward and rootward: peak terminology for plant polarity. Trends Plant Sci 15:593–594. doi:10.1016/j.tplants.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  CAS  PubMed  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1995) Growth and microtubule orientation of Zea-Mays roots subjected to osmotic-stress. Int J Plant Sci 156:774–783

    Article  CAS  PubMed  Google Scholar 

  • Blonde JD, Plaxton WC (2003) Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm of developing castor oilseeds. J Biol Chem 278:11867–11873. doi:10.1074/jbc.M211269200

    Article  CAS  PubMed  Google Scholar 

  • Boutte Y, Jonsson K, McFarlane HE, Johnson E, Gendre D, Swarup R, Friml J, Samuels L, Robert S, Bhalerao RP (2013) ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc Natl Acad Sci USA 110:16259–16264. doi:10.1073/pnas.1309057110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chanson A, Pilet PE (1982) Transport and metabolism of (2-14C)abscisic acid in maize root. Planta 154:556–561

    Article  CAS  PubMed  Google Scholar 

  • Chen RJ, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana agravitropic 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Zhong H-Y, Kuang J-F, Li J-G, Lu W-J, Chen J-Y (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390. doi:10.1007/s00425-011-1410-3

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1984) Convenient apparatus for the generation of small amounts of diazomethane. J Chromatogr 303:193–196

    Article  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dolan L (2013) Pointing PINs in the right directions: a potassium transporter is required for the polar localization of auxin efflux carriers. New Phytol 197:1027–1028. doi:10.1111/nph.12151

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83:475–488. doi:10.1007/s11103-013-0103-7

    Article  CAS  PubMed  Google Scholar 

  • Eliasson L, Bertell G, Bolander E (1989) Inhibitory action of auxin on root elongation not mediated by ethylene. Plant Physiol 91:310–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feria A-B, Alvarez R, Cochereau L, Vidal J, Garcia-Maurino S, Echevarria C (2008) Regulation of phosphoenolpyruvate carboxylase phosphorylation by metabolites and abscisic acid during the development and germination of barley seeds. Plant Physiol 148:761–774. doi:10.1104/pp.108.124982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fontaine V, Cabane M, Dizengremel P (2003) Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress. Physiol Plant 117:445–452. doi:10.1034/j.1399-3054.2003.00052.x

    Article  CAS  PubMed  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator Pin3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. doi:10.1038/nature02085

    Article  CAS  PubMed  Google Scholar 

  • Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, Cho H-T (2010) Differential auxin-transporting activities of PIN-FORMED proteins in arabidopsis root hair cells. Plant Physiol 153:1046–1061. doi:10.1104/pp.110.156505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102. doi:10.1016/j.febslet.2005.11.054

    Article  CAS  PubMed  Google Scholar 

  • Golaz F, Pilet P (1987) Root primordia and endogenous auxin in maize roots cultured in vitro. Physiol Plant 70:389–393

    Article  CAS  Google Scholar 

  • Grieneisen VA, Xu J, Maree AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013. doi:10.1038/nature06215

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K, Hansen H (2001) Ethylene-triggered abscisic acid: a principle in plant growth regulation? Physiol Plant 113:9–14. doi:10.1034/j.1399-3054.2001.1130102.x

    Article  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385. doi:10.1023/a:1015207114117

    Article  CAS  PubMed  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasenstein KH (1987) Non-transportable radioactivity in hypocotyls of Helianthus annuus after application of [H-3] IAA—analysis of diffusion parameters. Physiol Plant 70:139–145

    Article  CAS  Google Scholar 

  • Hasenstein KH, Evans ML (1988) Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894. doi:10.1104/pp.86.3.890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasenstein KH, Scherp P (2013) Biotechnology in space: challenges and opportunities for solid phase gene extraction. Curr Biotechnol 2:175–178

    Article  Google Scholar 

  • Hayashi K-I (2012) The interaction and integration of auxin signaling components. Plant Cell Physiol 53:965–975. doi:10.1093/pcp/pcs035

    Article  CAS  PubMed  Google Scholar 

  • Hobbie LJ (1998) Auxin: molecular genetic approaches in Arabidopsis. Plant Physiol Biochem 36:91–102

    Article  CAS  Google Scholar 

  • Hong L-W, Yan D-W, Liu W-C, Chen H-G, Lu Y-T (2014) TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis. J Exp Bot 65:275–286. doi:10.1093/jxb/ert374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa H, Hasenstein KH, Evans ML (1991) Computer-based video digitizer analysis of surface extension in maize roots—kinetics of growth-rate changes during gravitropism. Planta 183:381–390

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Mulkey TJ (1995) Hormones and the motor response of root gravitropism. Bioscience 21:13–17

    Google Scholar 

  • Kraft M, Kuglitsch R, Kwiatkowski J, Frank M, Grossmann K (2007) Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. J Exp Bot 58:1497–1503. doi:10.1093/jxb/erm011

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M, Grieneisen VA, Hofhuis H, ten Hove CA, Hogeweg P, Maree AFM, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:2721–2735. doi:10.1371/journal.pbio.0060307

    Article  CAS  Google Scholar 

  • Lewis DR, Miller ND, Splitt BL, Wu GS, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19:1838–1850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66

    Article  CAS  PubMed  Google Scholar 

  • Moons A, Valcke R, Van Montagu M (1998) Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant J 15:89

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853. doi:10.1104/pp.103.030031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oono Y, Chen QG, Theologis A (1998) Age mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell 10:1649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park MR, Wang Y-H, Hasenstein KH (2014) Profiling gene expression in germinating Brassica roots. Plant Mol Biol Report 32:541–548. doi:10.1007/s11105-013-0668-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrásek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  Google Scholar 

  • Pilet P, Chanson A (1981) Effect of abscisic acid on maize root growth. A critical examination. Plant Sci Lett 21:99–106

    Article  CAS  Google Scholar 

  • Pilet P, Rivier L (1981) Abscisic acid distribution in horizontal maize root segments. Planta 153:453–458

    Article  CAS  PubMed  Google Scholar 

  • Pilet P, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA. A critical reexamination. Plant Physiol 83:33–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol 133:761–772. doi:10.1104/pp.103.022582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasayama D, Ganguly A, Park M, Cho H-T (2013) The M3 phosphorylation motif has been functionally conserved for intracellular trafficking of long-looped PIN-FORMEDs in the Arabidopsis root hair cell. BMC Plant Biol. doi:10.1186/1471-2229-13-189

    PubMed Central  PubMed  Google Scholar 

  • Scherp P, Hasenstein KH (2008) Solid phase gene extraction isolates mRNA at high spatial and temporal resolution. Biotechniques 45:172–178

    Article  CAS  PubMed  Google Scholar 

  • Scott TK (1972) Auxins and roots. Ann Rev Plant Physiol 23:235–258. doi:10.1146/annurev.pp.23.060172.001315

    Article  CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease Aux1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taniguchi M, Nakamura M, Tasaka M, Morita MT (2014) Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems. Plant Signal Behav 17:e29570. doi:10.4161/psb.29570

    Article  Google Scholar 

  • Taybi T, Cushman JC (2002) Abscisic acid signaling and protein synthesis requirements for phosphoenolpyruvate carboxylase transcript induction in the common ice plant. J Plant Physiol 159:1235–1243. doi:10.1078/0176-1617-00834

    Article  Google Scholar 

  • Tsugeki R, Ditengou FA, Sumi Y, Teale W, Palme K, Okada K (2009) NO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root. Plant Cell 21:3133–3151. doi:10.1105/tpc.109.068841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    Article  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) A receptor for auxin. Plant Cell 17:2425–2429. doi:10.1105/tpc.105.036236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young L, Evans M, Hertel R (1990) Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol 92:792–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan X-Y, Jiang S-H, Wang M-F, Ma J, Zhang X-Y, Cui B (2014) Evaluation of internal control for gene expression in phalaenopsis by quantitative real-time PCR. Appl Biochem Biotechnol 173:1431–1445. doi:10.1007/s12010-014-0951-x

    Article  CAS  PubMed  Google Scholar 

  • Zazímalová E, Murphy AS, Yang H, Hoyerova K, Hosek P (2010) Auxin transporters—why so many? Cold SPRING Harbor Perspect Biol 2(3):a001552

    Article  Google Scholar 

  • Zhang NG, Hasenstein KH (1999) Initiation and elongation of lateral roots in Lactuca sativa. Int J Plant Sci 160:511–519. doi:10.1086/314147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NASA Grant NNX10AP91G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Hasenstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.R., Hasenstein, K.H. Hormone-Induced Gene Expression During Gravicurvature of Brassica Roots. J Plant Growth Regul 35, 190–201 (2016). https://doi.org/10.1007/s00344-015-9518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9518-5

Keywords

Navigation