Skip to main content
Log in

Senescence-Related Changes in the Leaf Apoplast

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The extracellular space of leaves is a highly dynamic compartment harboring a number of activities involved in signal recognition, import/export of organic and inorganic compounds, and defense against pathogens. Although this has not been extensively studied, there is evidence for the involvement of the extracellular space in signal perception and nutrient remobilization during senescence. Integration of the apoplast into the larger picture of cellular activities during senescence may help understand key events in the terminal phase of leaf development. Important events associated with senescence occur in the apoplast, and these events may offer targets for genetic manipulation to modulate senescence. In this paper we look into changes in the extracellular space of leaves accompanying senescence, with a special focus on apoplastic proteins and plasma membrane proteins related to signaling and export of amino acids. Other not less relevant senescence-related metabolic changes such as NH4 accumulation and the oxidative burst are beyond the scope of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson E, Ashfaq A, Resjö S, Andreasson E (2013) Plant secretome proteomics. Front Plant Sci 2013:462X–1664

    Google Scholar 

  • Altman A (1982) Retardation of radish leaf senescence by polyamines. Physiol Plant 54:189–193

    Article  CAS  Google Scholar 

  • Balibrea Lara ME, Gonzalez García M-C, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Rotsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basu U, Francis JL, Whittal RE, Stephens JL, Wang Y, Zaiane OR, Goebel R, Muench DG, Good AG, Taylor GJ (2006) Extracellular proteomes of Arabidopsis thaliana and Brassica napus roots: analysis and comparison by MudPIT and LC-MS/MS. Plant Soil 286:357–376

    Article  CAS  Google Scholar 

  • Becraft PW (1998) Receptor kinases in plant development. Trends Plant Sci 3:384–388

    Article  Google Scholar 

  • Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U (2012) Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. J Integr Plant Biol 54:540–554

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  CAS  Google Scholar 

  • Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E, van der Hoorn RAL, Kamoun S (2011) Phytophtora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci 108:20832–20837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Jiang F, Sodmergen Cui K (2003) Time-course of programmed cell death in Eucommia ulmoides. J Plant Res 116:7–12

    PubMed  Google Scholar 

  • Caputo C, Barneix AJ (1999) The relationship between sugar and amino acid export to the phloem in young wheat plant. Ann Bot 84:33–38

    Article  CAS  Google Scholar 

  • Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, Kim SH, Kalkum M, Hong TB, Gorshkova EN, Torrance L, Vartapetian AB, Taliansky M (2010) Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J 29:1149–1161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chivasa S, Ndimba BK, Simon WJ, Lindsay K, Slabas AR (2005) Extracellular ATP functions as an external metabolite regulating plant cell viability. Plant Cell 17:3019–3034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho C-W, Chung E, Kim K, Soh H-A, Jeong YK, Lee S-W, Lee Y-C, Kim K-S, Chung Y-S, Lee J-H (2009) Plasma membrane localization of soybean matrix metalloproteinase differentially induced by senescence and abiotic stress. Biol Plant 53:461–467

    Article  CAS  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Couturier J, Doidy J, Guinet F, Wipf D, Blaudez D, Chalot M (2010) Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar. Ann Bot 105:1159–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RD (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Voss U, Jürgens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nat Cell Biol 10:1166–1173

    Article  CAS  Google Scholar 

  • Delannoy M, Alves G, Vertommen D, Ma J, Boutry M, Navarre C (2008) Identification of peptidases in Nicotiana tabacum leaf intercellular fluid. Proteomics 11:2285–2298

    Article  CAS  Google Scholar 

  • Delorme VGR, McCabe PF, Kim D-J, Leaver CJ (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol 123:917–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L (2012) Unconventional protein secretion. Trends Plant Sci 17:1360–1385

    Google Scholar 

  • Doehlemann G, Hemetsberger C (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol 198:1001–1016

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Gibbings G, Mahmood T, Naqvi SM (2008) Germin and germin-like proteins: evolution, structure and function. Crit Rev Plant Sci 27:342–375

    Article  CAS  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Texeira AR (2007) The role of plant defense proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700

    Article  CAS  PubMed  Google Scholar 

  • Fischer WN, Loo DDF, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+ co-transporters for cellular import of neutral and charged amino acids. Plant J 29:717–731

    Article  CAS  PubMed  Google Scholar 

  • Flinn B (2008) Plant extracellular matrix metalloproteinases. Funct Plant Biol 35:1183–1193

    Article  CAS  Google Scholar 

  • Fluckiger R, Slusarenko AJ, Ward JM, Rentsch D (2004) AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J 40:488–499

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci 92:12036–12040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gadjev I, Stone JM, Gechev JS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  • Gilroy EM, Hein I, van der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, López EC, Borras-Hidalgo O, Pritchard L, Loake GJ, Lacomme C, Birch PR (2007) Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J 52:1–13

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Popova OV, Dietz K-J (2001) Mutation of the matrix metalloproteinase AtMMP2 inhibits growth and causes late flowering and early senescence in Arabidopsis. J Biol Chem 277:5541–5547

    Article  PubMed  CAS  Google Scholar 

  • Graham JS, Xiong J, Gillikin JW (1991) Purification and developmental analysis of a metalloendoproteinase from the leaves of Glycine max. Plant Physiol 97:786–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, Rentsch D (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137(1):117–126. doi:10.1104/pp.104.055079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupisnka K (2008) Leaf senescence and nutrient remobilization in barley and wheat. Plant Biol 10:37–49

    Article  CAS  PubMed  Google Scholar 

  • Groover AT, Fontana JR, Arroyo JM, Yordan C, McCombie WR, Martienssen RA (2003) Secretion trap tagging of secreted and membrane- spanning proteins using Arabidopsis gene traps. Plant Physiol 132:698–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunawardena AH, Greenwood JS, Dengler NG (2004) Programmed cell death remodels Lace plant leaf shape during development. Plant Cell 16:60–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hajouj T, Michelis R, Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124:1305–1314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt E, Gattolin S, Newbury HJ, Bale JS, Tseng HM, Barrett DA, Pritchard J (2010) A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J Exp Bot 61:55–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Ni D-A, Ruan Y-L (2009) Post-translational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaffarnik FAR, Jones AEM, Rathjen JP, Peck SC (2009) Effector proteins of the bacterial pathogen Pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana. Mol Cell Proteomics 8:145–156

    Article  CAS  PubMed  Google Scholar 

  • Karim S, Holmström KO, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M (2007) AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 6:1431–1445

    Article  CAS  Google Scholar 

  • Kohl S, Hollmann J, Blattner FR, Radchuk V, Andersch F, Steuernagel B, Schmutzer T, Scholz U, Krupinska K, Weber H, Weschke W (2012) A putative role for amino acid permeases in sink-source communication of barley tissues uncovered by RNA-seq. BMC Plant Biol 2(12):154. doi:10.1186/1471

    Article  CAS  Google Scholar 

  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krupinska K (2007) Fate and activities of plastids during senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht, pp 433–449

    Chapter  Google Scholar 

  • Kuriyama H, Fukuda H (2002) Developmental programmed cell death in plants. Curr Opin Plant Biol 5:568–573

    Article  CAS  PubMed  Google Scholar 

  • Kwon SJ, Jin HCh, Lee S, Nam MH, Chung JH, Kwon SI, Ryu Ch, Park OK (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58:235–245

    Article  CAS  PubMed  Google Scholar 

  • Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

    Article  CAS  PubMed  Google Scholar 

  • Lehmann S, Gumy Ch, Blatter E, Boeffel S, Fricke W, Rentsch D (2011) In planta function of compatible solute transporters of the AtProT family. J Exp Bot 62:787–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li X-P, Gan R, Li P-L, Ma Y–Y, Zhang L-W, Zhang R, Wong Y, Wang NN (2006) Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in of soybean leaf senescence. Plant Mol Biol 61:829–844

    Article  CAS  PubMed  Google Scholar 

  • Ligat L, Lauber E, Albenne C, San Clemente H, Valot B, Zivy M, Pont-Lezica R, Arlat M, Jamet E (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11:1798–1813

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Bush DR (2006) Expression and transcriptional regulation of amino acid transporters in plants. Amino Acids 30:113–120

    Article  PubMed  CAS  Google Scholar 

  • Lubkowitz M (2011) The oligopeptide, transporters: a small gene family with a diverse group of substrates and functions? Mol Plant 10:1–9

    Google Scholar 

  • Martinez D, Bartoli C, Vojislava G, Guiamét JJ (2007) Vacuolar cysteine proteases of wheat (Triticum aestivum L) are common to leaf senescence induced by different factors. J Exp Bot 58:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Martínez D, Costa ML, Guiamet JJ (2008) Senescence associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol 10:15–22

    Article  PubMed  CAS  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilization of plant development and grain filling. Plant Biol 10:23–36

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi Y, Yang H, Sakagami Y (2001) Peptide signals and their receptors in higher plants. Trends Plant Sci 6:573–577

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Eskandari S, Grallath S, Rentsch D (2006) AtGAT1, a high affinity transporter for gamma-aminobutyric acid in Arabidopsis thaliana. J Biol Chem 281:7197–7204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minic Z, Jamet E, Negroni L, der Garabedian PA, Zivy M, Jouanin L (2007) A sub-proteome of Arabidopsis thaliana mature stems trapped on concanavalin A is enriched in cell wall glycoside hydrolases. J Exp Bot 58:2503–2512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA (2005) Endocytotic cycling of PM proteins. Annu Rev Plant Biol 56:221–251

    Article  CAS  PubMed  Google Scholar 

  • Muschou PN, Paschalidis K, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  Google Scholar 

  • Nakamura S, Suzuki T, Kawamukai M, Nakagawa T (2012) Expression analysis of Arabidopsis thaliana small secreted protein genes. Biosci Biotechnol Biochem 76:436–446

    Article  CAS  PubMed  Google Scholar 

  • Noodén LD (1988) Abscisic acid, auxin and other regulators of senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 329–368

    Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753

    Article  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Phan Tran L (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458

    Article  CAS  PubMed  Google Scholar 

  • Osawa H, Stacey G, Gassmann W (2006) ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem J 1:267–275

    Article  CAS  Google Scholar 

  • Otegui MS, Spitzer CH (2008) Endosomal functions in plants. Traffic 9:1589–1598

    Article  CAS  PubMed  Google Scholar 

  • Otegui MS, Noh Y, Martinez DE, Vila Petroff MG, L. Staehelin A, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolyticactivity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844

    Article  CAS  PubMed  Google Scholar 

  • Planas-Portell J, Gallart M, Tiburcio AF, Altabella T (2013) Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol 13:109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568

    Article  CAS  PubMed  Google Scholar 

  • Price AM, Aros Orellana DF, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ (2008) A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147:1898–1912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pruzinska A, Tanner G, Aubry S, Anders I, Moser S, Muller T, Ongania KH, Krautler B, Youn JY, Liljegren SJ, Hortensteiner S (2005) Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Regente M, Pinedo M, Elizalde M, de la Canal L (2012) Apoplastic exosome-like vesicles. A new way of protein secretion in plants? Plant Signal Behavior 5:544–546

    Article  CAS  Google Scholar 

  • Rentsch D, Schmidtb S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14:666–673

    Article  CAS  PubMed  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  • Song W, Henqueta MGL, Mentinkb RA, van Dijka AJ, Cordewenera JHG, Boscha D, Americaa AHP, van der Krolb AR (2011) N-glycoproteomics in plants: perspectives and challenges. J Proteomics 74:1463–1474

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, Koh S, Granger CH, Becker JM (2002) Peptide transport in plants. Trends Plant Sci 7:257–263

    Article  CAS  PubMed  Google Scholar 

  • Stacey MG, Osawa H, Patel A, Gassmann W, Stacey G (2006) Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223:291–305

    Article  CAS  PubMed  Google Scholar 

  • Su YH, Frommer B, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi T, Kakhei J-I (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tegeder M (2012) Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol 15:15–21

    Article  CAS  Google Scholar 

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M, Ward JM (2012) Molecular evolution of plant AAP and LHT amino acid transporters. Front Plant Sci. doi:10.3389/fpls.2012.00021

    PubMed Central  PubMed  Google Scholar 

  • van der Graaff E, Schwake R, Schneider A, Desimone M, Flügge U-I, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van der Linde K, Hemetsberger CH, Kastner Ch, Kaschani F, van der Hoorn RAL, Kumlehn J, Doehlemanna G (2012) A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24:1285–1300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23:855–864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vanacker H, Carver TLV, Foyer ChH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vartapetian AB, Tuzhikov AI, Chichkova NV, Taliansky M, Wolpert TJ (2011) A plant alternative to animal caspases: subtilisin-like proteases. Cell Death Differ 18:1289–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  CAS  PubMed  Google Scholar 

  • Weichert A, Brinkmann C, Komarova NY, Dietrich D, Thor K, Meier S, Suter Grotemeyer M, Rentsch D (2012) AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. Planta 235:311–323

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2(8):e718

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu F, Meng T, Li P, Yu Y, Cui Y, Wang Y, Gong Q, Wang NN (2011) A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiol 157:2131–2153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yen C-H, Yang C-H (1998) Evidence for programmed cell death during senescence in plants. Plant Cell Physiol 39:922–927

    Article  CAS  Google Scholar 

  • Yoshida S, Ito M, Nishida I, Watanabe A (2001) Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana. Plant Cell Physiol 42:170–178

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M (2010) Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 22:3603–3620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou L, Bokhari SA, Dong C-J, Liu J-Y (2011) Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS ONE 6:e16723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana E. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, D.E., Guiamet, J.J. Senescence-Related Changes in the Leaf Apoplast. J Plant Growth Regul 33, 44–55 (2014). https://doi.org/10.1007/s00344-013-9395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9395-8

Keywords

Navigation