H2O2 Involvement in Polyamine-Induced Cell Death in Tobacco Leaf Discs

Abstract

The response of tobacco (Nicotiana tabacum L.) wild-type SR1 leaf discs in terms of reactive oxygen species (ROS) formation and cell death occurrence was evaluated after exposure to the polyamines (PAs) putrescine (Put), spermidine (Spd), and spermine (Spm). Although NADPH oxidase-like enzyme activity was inhibited by all PAs at 3 or 21 h of treatment, H2O2 content increased significantly in a time- and concentration-dependent manner, suggesting that H2O2 accumulation was linked to the activity of other ROS-generating enzymes. Polyamine oxidase (PAO) activity, which increased markedly upon application of Spd or Spm, is a prime candidate for the increased H2O2 accumulation. Except for 0.1 mM Put, which maintained guaiacol peroxidase (GPOX) and catalase (CAT) activities at the same level as the control, the other PA treatments decreased CAT, ascorbate peroxidase, and GPOX activities at 21 h, contributing to the H2O2 increase. Esterase activity and Evans blue staining, two cell death parameters, were negatively affected at 3 h of treatment with 1 mM Spd and with both concentrations of Spm, whereas at 21 h there was an increase in cell death with both concentrations of the three PAs, except for 0.1 mM Put, which did not alter those parameters. The expression of the senescence-associated cysteine protease gene CP1 was measured to monitor senescence, a physiological cell death process. Application of all PAs increased the expression of the gene, except for 0.1 mM Put, which decreased its expression at 21 h. This result was in agreement with the prevention of cell death exerted by Put and evidenced by Evans blue staining, esterase activity, and electrolyte release.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  2. Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases ‘on the move’: an update. Plant Physiol Biochem 48:560–564

    CAS  Article  PubMed  Google Scholar 

  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  Article  PubMed  Google Scholar 

  4. Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell, Tissue Organ Cult 39:7–12

    Article  Google Scholar 

  5. Becana M, Aparicio-Tejo P, Irigoyen JJ, Sánchez-Díaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  7. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  8. Cohen SS (1998) A guide to polyamines. Oxford University Press, New York

    Google Scholar 

  9. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    CAS  Article  PubMed  Google Scholar 

  10. Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold accumulation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. Danon A, Gallois P (1998) UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett 437:131–136

    CAS  Article  PubMed  Google Scholar 

  12. Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    CAS  Article  PubMed  Google Scholar 

  13. de Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant, Cell Environ 35:234–244

    Article  Google Scholar 

  14. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  16. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Article  PubMed  Google Scholar 

  17. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    CAS  Article  PubMed  Google Scholar 

  18. Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    CAS  Article  Google Scholar 

  19. Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    CAS  Article  PubMed  Google Scholar 

  20. Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    CAS  Article  PubMed  Google Scholar 

  21. He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    CAS  Article  PubMed  Google Scholar 

  22. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Article  PubMed  Google Scholar 

  23. Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    CAS  Article  PubMed  Google Scholar 

  24. Iannone MF, Rosales EP, Groppa MD, Benavides MP (2010) Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma 245:15–27

    CAS  Article  PubMed  Google Scholar 

  25. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular function. Biochem Biophys Res Commun 271:559–564

    CAS  Article  PubMed  Google Scholar 

  26. Kumuda CD, Hara PM (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    Article  Google Scholar 

  27. Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    CAS  Article  PubMed  Google Scholar 

  28. Maehly AC, Chance B (1954) The assay of catalase and peroxidase. In: Glick D (ed) Methods of biochemical analysis. Interscience, New York, pp 357–424

    Google Scholar 

  29. Matanguihan RM, Konstantinov KB, Yoshida T (1994) Dielectric measurement to monitor the growth and the physiological states of biological cells. Bioprocess Biosyst Eng 11:213–222

    CAS  Article  Google Scholar 

  30. McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12:267–280

    CAS  Article  Google Scholar 

  31. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    CAS  Article  PubMed  Google Scholar 

  32. Montillet JL, Chamnongpol S, Rustérucci C, Dat J, van de Cotte B, Agnel JP, Battesti C, Inzé D, Van Breusegem F, Triantaphylidès C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Moschou PN, Delis ID, Paschalidis KA, Roubelakis-Angelakis KA (2008a) Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol Plant 133:140–156

    CAS  Article  PubMed  Google Scholar 

  34. Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008b) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015

    CAS  Article  PubMed  Google Scholar 

  36. Murgia ID, Tarantino D, Vannini C, Bracale M, Caravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    CAS  Article  PubMed  Google Scholar 

  37. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach choroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  38. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    CAS  Article  PubMed  Google Scholar 

  39. Niewiadomska E, Polzien L, Desel C, Rozpadek P, Miszalski Z, Krupinske K (2009) Spatial pattern of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. J Plant Physiol 166:1057–1068

    CAS  Article  PubMed  Google Scholar 

  40. Ogata K, Nishimoto N, Uhlinger DJ, Igarashi K, Takeshita M (1996) Spermine suppresses the activation of human neutrophil NADPH oxidase in cell-free and semi-recombinant systems. Biochem J 313:549–554

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220:826–837

    CAS  Article  PubMed  Google Scholar 

  42. Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    CAS  Article  PubMed  Google Scholar 

  43. Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42:857–865

    CAS  Article  PubMed  Google Scholar 

  44. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  45. Scheel D (1998) Resistance response physiology and signal transduction. Curr Opin Plant Biol 1:305–310

    CAS  Article  PubMed  Google Scholar 

  46. Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. C R Acad Bulg Sci 51:121–124

    Google Scholar 

  47. Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–439

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  48. Shou H, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101:3298–3303

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  49. Simon-Plas F, Elmayan T, Blein JP (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–147

    CAS  Article  PubMed  Google Scholar 

  50. Smith TA, Barker JHA (1988) The di- and polyamine oxidase of plants. In: Zappia V, Pegg AE (eds) Progress in polyamine research. Novel biochemical, pharmacological and clinical aspects. Plenum Press, New York, pp 573–587

    Google Scholar 

  51. Steward N, Martin R, Engasser JM, Goergen JL (1999) A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep 19:171–176

    CAS  Article  Google Scholar 

  52. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    CAS  Article  PubMed  Google Scholar 

  53. Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T (2003) Spermine signaling in tobacco: activation of mitogen-activated protein kinase by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    CAS  Article  PubMed  Google Scholar 

  54. Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    CAS  Article  PubMed  Google Scholar 

  55. Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    CAS  Article  PubMed  Google Scholar 

  56. Tassoni A, Watkins CB, Davies PJ (2006) Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J Exp Bot 57:3313–3325

    CAS  Article  PubMed  Google Scholar 

  57. Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  58. Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EI, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    CAS  Article  PubMed  Google Scholar 

  59. Vannini C, Marsoni M, Cantara C, De Pinto MC, Locato V, De Gara L, Bracale M (2012) The soluble proteome of tobacco bright yellow-2 cells undergoing H2O2-induced programmed cell death. J Exp Bot 63:3137–3155

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  60. Xu XF, Chye LM (1999) Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant J 17:321–328

    CAS  Article  PubMed  Google Scholar 

  61. Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132:1973–1981

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  62. Yoda Y, Fujimura K, Takahashi H, Munemura I, Uchimiya H, Sano H (2009) Polyamines as a common source of hydrogen peroxide in host- and non-host hypersensitive response during pathogen infection. Plant Mol Biol 70:103–112

    CAS  Article  PubMed  Google Scholar 

  63. Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M (2007) Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 292:1204–1215

    Article  Google Scholar 

  64. Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  65. Ziosi V, Bregoli AM, Bonghi C, Fossati T, Biondi S, Costa G, Torrigiani P (2006) Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica). New Phytol 172:229–238

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Buenos Aires (Project UBACYT 20020100100295) and CONICET (PIP 0097). Benavides MP and Groppa MD are researchers of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and MF Iannone has a fellowship from CONICET. We thank Dr. Frank van Breusegem, Ghent University, Belgium, for providing SR1 tobacco seeds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to María Patricia Benavides.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iannone, M.F., Rosales, E.P., Groppa, M.D. et al. H2O2 Involvement in Polyamine-Induced Cell Death in Tobacco Leaf Discs. J Plant Growth Regul 32, 745–757 (2013). https://doi.org/10.1007/s00344-013-9341-9

Download citation

Keywords

  • Cell death
  • Hydrogen peroxide
  • Nicotiana tabacum
  • Polyamines
  • Reactive oxygen species