Skip to main content

Effects of Exogenous Salicylic Acid and Nitric Oxide on Physiological Characteristics of Perennial Ryegrass Under Cadmium Stress

Abstract

The effects of Cd, in combination with salicylic acid (SA) and sodium nitroprusside (SNP), on ryegrass seedlings were studied. Exposure of plants to 0.1 mM CdCl2 for 2 weeks resulted in toxicity symptoms such as chlorosis and necrotic spots on leaves. The addition of 0.2 mM SA or 0.1 mM SNP slightly alleviated the toxic effects of Cd. After application of both SA and SNP, these symptoms significantly decreased. Treatment with Cd resulted in a decrease of dry weight of roots and shoots, chlorophyll content, net photosynthetic rate (P n), transpiration rate (T r), and the uptake and translocation of mineral elements. In Cd-treated plants, levels of lipoxygenase activity and malondialdehyde, hydrogen peroxide (H2O2), and proline contents significantly increased, whereas the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, decreased in both roots and shoots. The results indicated that Cd caused physiological stresses in ryegrass plants. The Cd-stressed plants exposed to SA or SNP, especially to SA + SNP, exhibited improved growth compared with Cd-stressed plants. Application of SA or SNP, especially the combination SA + SNP, considerably reduced root-to-shoot translocation of Cd and increased the activities of antioxidant enzymes in both roots and shoots of Cd-stressed plants. The interaction of SA and SNP increased chlorophyll content, P n and T r in leaves, and the uptake and translocation of mineral elements, and decreased lipid peroxidation and H2O2 and proline accumulation in roots and shoots. These results suggest that SA or SNP, and, in particular, their combination counteracted the negative effects of Cd on ryegrass plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ait Ali N, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    Article  Google Scholar 

  2. Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319:13–25

    CAS  Article  PubMed  Google Scholar 

  3. Bates LS, Waldern SP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  4. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    CAS  Article  Google Scholar 

  5. Cui X, Zhang YK, Wu XB, Liu CS (2010) The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil Environ 6:274–281

    Google Scholar 

  6. Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517

    CAS  Article  Google Scholar 

  7. Drazic G, Mihailovic N, Lojic M (2006) Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol Plantarum 50:239–244

    CAS  Article  Google Scholar 

  8. Ekmekci Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    CAS  Article  PubMed  Google Scholar 

  9. El-Tayeb MA, El-Enany AE, Ahmed NL (2006) Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul 50:191–199

    CAS  Article  Google Scholar 

  10. Groppa MD, Rosales EP, Lannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    CAS  Article  PubMed  Google Scholar 

  11. Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    CAS  Article  PubMed  Google Scholar 

  12. Guo B, Liang YC, Zhu YG (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166:20–31

    CAS  Article  PubMed  Google Scholar 

  13. Hannaway D, Fransen S, Cropper J, Teel M, Chaney M, Griggs T, Halse R, Hart J, Cheeke P, Hansen D, Klinger R, Lane W (1999) Perennial ryegrass (Lolium perenne L.). In: A Pacific Northwest Extension Publication, vol PNW 503. Oregon State University, Washington State University, University of Idaho

  14. He Y, Liu Y, Cao W, Hua M, Xu B, Huang B (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci 45:988–995

    CAS  Article  Google Scholar 

  15. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Article  PubMed  Google Scholar 

  16. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circ Calif Agric Exp Sta 347:29–32

    Google Scholar 

  17. Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    CAS  Article  Google Scholar 

  18. Knudson LL, Tibbitts TW, Edwards GE (1977) Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol 60:606–608

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. Kovacik J, Gruz J, Backor M, Strnad M, Repcak M (2009) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    CAS  Article  PubMed  Google Scholar 

  20. Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    CAS  Article  PubMed  Google Scholar 

  21. Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    CAS  Article  Google Scholar 

  22. Lee S, Park CM (2010) Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity. Plant Signal Behav 5:1534–1536

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. Leonor R, Marcela S, Irene M, Eduardo Z, Lorenzo L (2011) Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. Plant Sci 181:582–592

    Article  Google Scholar 

  24. Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC, Zhu QS (2003) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473

    CAS  Article  PubMed  Google Scholar 

  25. Lopez-Carrion AI, Castellano R, Rosales MA, Ruiz JM, Romero L (2008) Role of nitric oxide under saline stress: implications on proline metabolism. Plant Biol 52:587–591

    CAS  Article  Google Scholar 

  26. Macek T, Mackova M, Pavlikova D, Szakova J, Truksa M, Singh Cundy A, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    CAS  Article  Google Scholar 

  27. Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Mishra A, Choudhuri MA (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plantarum 42:409–415

    CAS  Article  Google Scholar 

  29. Nakano Y, Asada K (1981) Hydrogen peroxide scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  30. Nickel RS, Cunningham BA (1969) Improved peroxidase assay method using Ieuco 2,3,6-trichloroindophenol and application to comparative measurements of peroxidase catalysis. Anal Biochem 27:292–299

    CAS  Article  PubMed  Google Scholar 

  31. Patra HL, Kar M, Mishre D (1978) Catalase activity in leaves and cotyledons during plant development and senescence. Biochem Pharmacol 172:385–390

    CAS  Google Scholar 

  32. Patterson BD, Mackae EA, Mackae IB (1984) Estimation of hydrogen peroxide in plant extracts using Titanium (IV). Anal Chem 139:487–492

    CAS  Google Scholar 

  33. Prasad KVSK, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    CAS  Article  Google Scholar 

  34. Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus satious L.) seed germination. Plant Cell Environ 20:600–608

    CAS  Article  Google Scholar 

  35. Rodriguez SM, Romero PC, Zabalza A, Corpas FJ, Gómez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 291:1532–1544

    Article  Google Scholar 

  36. Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  37. Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russian J Plant Physiol 53:257–277

    CAS  Article  Google Scholar 

  38. Shi GR, Cai QS (2008) Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46:627–630

    CAS  Article  Google Scholar 

  39. Shi QH, Zhu ZJ (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    CAS  Article  Google Scholar 

  40. Siedlecka A, Baszinsky T (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd induced iron deficiency. Plant Physiol 87:199–202

    CAS  Article  Google Scholar 

  41. Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    CAS  Article  Google Scholar 

  42. Singh BR, Gupta SK, Azaizeh H, Shilev S, Sudre D, Song WY, Martinoia E, Mench M (2011) Safety of food crops on land contaminated with trace elements. J Sci Food Agr 91:1349–1366

    CAS  Article  Google Scholar 

  43. Smeets K, Ruytinx J, Semane B, Belleghem FV, Remans T, Sanden SV, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    CAS  Article  Google Scholar 

  44. Smith G, Brennan E, Greenhalgh B (1985) Cadmium sensitivity of soybean related to efficiency in iron utilization. Environ Exp Bot 25:99–106

    CAS  Article  Google Scholar 

  45. Stewart RC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  46. Stochs SJ, Bagchi D (1995) Oxidative mechanism in the toxicity of mental ions. Free Radic Res Commun 18:321–336

    Article  Google Scholar 

  47. Wang QH, Liang X, Dong YJ, Xu LL, Zhang XW, Hou J, Fan ZY (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20

    CAS  Article  Google Scholar 

  48. Xiong J, An LY, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    CAS  Article  PubMed  Google Scholar 

  49. Xu J, Wang WY, Yin HX, Liu XJ, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    CAS  Article  Google Scholar 

  50. Yi TH, Ching HK (2007) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:231–241

    Article  Google Scholar 

  51. Yilmaz DD, Parlak KU (2011) Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecol Indic 11:417–423

    CAS  Article  Google Scholar 

  52. Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces Cu toxicity and Cu-induced NH4 + accumulation in rice leaves. J Plant Physiol 162:1319–1330

    CAS  Article  PubMed  Google Scholar 

  53. Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    CAS  Article  Google Scholar 

  54. Zhang GP, Fukami M, Sekimoto H (2002) Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop Res 4079:1–7

    Google Scholar 

  55. Zhang FQ, Zhang HX, Xia Y, Wang JP, Xu LL, Shen ZJ (2011) Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483

    CAS  Article  PubMed  Google Scholar 

  56. Zhou ZS, Guo K, Abdelrahman AE, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank English Lecturer Mr. Stuart Craig MA (England, Taishan University, China), Doctor Chengliang Li (RWTH Aachen University, Germany), lecturer Xiujuan Wang (College of Foreign Languages, Shandong Agricultural University), and Doctor Hongyi Luo (Nanyang Technological University, Singapore) for their critical reading and revision of the manuscript. Special acknowledgments are given to the editors and reviewers. This research work was financially supported by the Projects National Natural Science Foundation of China (No. 40701094) and the Projects “948” of the Agriculture Ministry of China (NO. 2011-G30).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuanjie Dong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Q., Liang, X., Dong, Y. et al. Effects of Exogenous Salicylic Acid and Nitric Oxide on Physiological Characteristics of Perennial Ryegrass Under Cadmium Stress. J Plant Growth Regul 32, 721–731 (2013). https://doi.org/10.1007/s00344-013-9339-3

Download citation

Keywords

  • Antioxidant enzymes
  • Cadmium
  • Lolium perenne L
  • Mineral elements
  • Proline