Skip to main content

Advertisement

Log in

Coexpression of ScNHX1 and ScVP in Transgenic Hybrids Improves Salt and Saline-Alkali Tolerance in Alfalfa (Medicago sativa L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salt and saline-alkali are major environmental factors limiting the growth and productivity of alfalfa, the most economically important forage legume worldwide. In this study, alfalfa plants transgenic for both ScNHX1 (encoding vacuolar membrane Na+/H+ antiporter from Suaeda corniculata) and ScVP (encoding vacuolar H+-PPase from S. corniculata) were produced by cross-pollination. Transgenic alfalfa plants coexpressing ScVP/ScNHX1 showed enhanced salt and saline-alkali tolerance to 300 or 200 mM NaCl with 100 mM NaHCO3 treatments, compared with wild-type plants. In addition, ScVP/ScNHX1-coexpressing alfalfa plants accumulated more Na+ in leaves and roots than wild-type plants and showed increased tolerance to higher salt and saline-alkali stress. Using the fluorescent carboxy-SNARF probe, the intracellular pH was visualized in the transgenic and wild-type plants under salt and saline-alkali stress. The results showed that the overnight treatment caused a massive change in pH in ScVP/ScNHX1-coexpressing alfalfa plants and they showed that there was significantly higher vacuolar alkalization under salt stress compared with wild-type plants. However, saline-alkali treatment enhanced vacuolar acidification more in the wild-type plants than in transgenic plants. Taken together, our results indicate that coexpression of multiple, effective genes in transgenic plants can enhance resistance to salt and saline-alkali stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aharonovitz O, Grinstein S (1999) Na+/H+ exchangers: structure, function and regulation. Drugs News Perspect 12:105–109

    Article  CAS  Google Scholar 

  • Albrechtova JTP, Heilscher S, Leske L, Walczysko P, Wagner E (2003) Calcium and pH patterning at the apical meristem are specifically altered by photoperiodic flower induction in Chenopodium spp. Plant Cell Environ 26:1985–1994

    Article  CAS  Google Scholar 

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:76–112

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Asad S, Mukhtar Z, Nazir F, Hashmi JA, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Cragoe EJ, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167

    Article  PubMed  CAS  Google Scholar 

  • Bowers K, Levi BP, Patel FI, Stevens TH (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294

    PubMed  CAS  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  PubMed  CAS  Google Scholar 

  • Chauhan S, Forsthoefel N, Ran Y, Quigley F, Nelson DE, Bohnert HJ (2000) Na+/myo-inositol symporters and Na+/H+ antiport in Mesembryanthemum crystallinum. Plant J 24:511–522

    Article  PubMed  CAS  Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Scientific Publishers, Jodhpur

    Book  Google Scholar 

  • Flowers TJ, Flowers SA, Greenway H (1986) Effects of sodium chloride on tobacco plants. Plant Cell Environ 9:645–651

    Article  CAS  Google Scholar 

  • Fukuda A, Yazaki Y, Ishikawa T, Koike S, Tanaka Y (1998) Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol 39:196–201

    Article  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Gao Q, Duan XG, Yue GD, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Garbarino J, Dupont FM (1988) NaCl induces a Na+/H+ antiport in tonoplast vesicles from barley roots. Plant Physiol 86:231–236

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana transporters, AtNHX1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li JS, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  PubMed  CAS  Google Scholar 

  • Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135:1502–1513

    Article  PubMed  Google Scholar 

  • Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S, Zhao Y, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60:41–50

    Article  PubMed  CAS  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Fang B, Yang CW, Shi DC, Wang DL (2009) Effects of various salt-alkaline mixed stresses on the state of mineral elements in nutrient solutions and the growth of alkali resistant halophyte Chloris virgata. J Plant Nutr 7:1137–1147

    Article  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance current assessment. J Irrig Drainage Div ASCE 103:115–134

    Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance in rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Orlowski J, Grinstein S (1997) Na+/H+ exchangers of mammalian cells. J Biol Chem 272:22373–22376

    Article  PubMed  CAS  Google Scholar 

  • Osborn T, Brouwer D, McCoy T (1997) Molecular marker analysis of alfalfa. In: McKersie B, Brown D (eds) Biotechnology and the Improvement of Forage Legumes. CABI Publishing, Wallingford, pp 91–109

    Google Scholar 

  • Paulo S, Arnoldo RF, Rui MT, Hernâni G (2010) Role of tonoplast proton pumps and Na+/H+ antiport systemin salt tolerance of Populus euphratica Oliv. J Plant Growth Regul 29:23–34

    Article  Google Scholar 

  • Rhoades JD, Loveday J (1990) Salinity in irrigated agriculture. In: Steward BA, Nielsen DR (eds) American Society of Civil Engineers, Irrigation of Agricultural Crops, Monograph 30. American Society of Agronomy, Madison, pp 1089–1142

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter impact of AtNHX1 on gene expression. Plant J 40:752–771

    Article  PubMed  CAS  Google Scholar 

  • Storey R (1995) Salt tolerance, ion relations and the effects of root medium on the response of Citrus to salinity. Aust J Plant Physiol 22:101–114

    Article  CAS  Google Scholar 

  • Sze H, Ward JM, Lai S (1992) Vacuolar H+-translocating ATPase from plants: structure, function, and isoforms. J Bioenerg Biomembr 24:371–381

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    PubMed  CAS  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Fukada-Tanaka S, Inagaki Y, Saito N, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Iida S (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol 42:451–461

    Article  PubMed  CAS  Google Scholar 

  • Yehoram L, Naomi MB, Olivier C, Gil R, Yossi N, Mazal S, Gil C, Alex L (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Program for New Century Excellent Talents in University (Grant no. NCET-08-0693), the Special Program for Research of Transgenic Plants (Grant no. 2011ZX08010-002), the National Natural Science Foundation of China (Grant no. 30971804), and the Science and Technology Development Project of Jilin Province and Changchun City, China (Grant nos. 20080252 and 2009024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Fan, XD., Wang, FW. et al. Coexpression of ScNHX1 and ScVP in Transgenic Hybrids Improves Salt and Saline-Alkali Tolerance in Alfalfa (Medicago sativa L.). J Plant Growth Regul 32, 1–8 (2013). https://doi.org/10.1007/s00344-012-9270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9270-z

Keywords