Skip to main content
Log in

Ethylene Interacts with Auxin in Regulating Developmental Attenuation of Gravitropism in Flax Root

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Previous research shows that gravity-sensing in flax (Linum usitatissimum) root is initiated during seed imbibition and precedes root emergence. In this study we investigated the developmental attenuation of flax root gravitropism post-germination and the involvement of ethylene. Gravity response deteriorated significantly from 3 to 11 h after root emergence, which occurred at around 19 h after imbibition (that is, from “age” 22 to 30 h). Although the root elongation rate increased from 22 to 30 h, the gravitropic curving rate declined steadily. Older roots were able to tolerate higher levels of exogenous IAA before inhibition of elongation and gravitropism occurred. The age-dependent effect of IAA on root growth and gravitropism suggests that young roots are more sensitive to auxin and respond to a smaller vertical auxin gradient than older roots upon horizontal gravistimulation. The ethylene synthesis inhibitor AVG (2-aminoethoxyvinyl glycine, 10 μM) or ethylene action inhibitor Ag+ (10 μM) stimulated gravitropic curvature of 30 h roots by 24 and 32%, respectively, but had no effect on 22 h roots, suggesting that as roots age, ethylene begins to play a role in root gravitropism. The auxin transport inhibitor NPA (N-naphthylphthalamic acid, 50 μM) reduced gravitropic curvature of 30 h roots by 24% but had no effect on 22 h roots. On the other hand, treating roots simultaneously with the auxin transport inhibitor and ethylene synthesis or action inhibitor stimulated gravitropic curvature of 30 h roots but not 22 h roots. Taken together, these data indicate that as roots develop, their weakened gravity response is due to decreased auxin sensitivity and possibly auxin transport regulated by ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abeles F, Morgan P, Saltveit M Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    Article  PubMed  CAS  Google Scholar 

  • Björkman T (1988) Perception of gravity by plants. In: Callow JA (ed) Advances in botanical research. Academic Press, San Diego, pp 1–41

    Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116:213–222

    Article  PubMed  CAS  Google Scholar 

  • Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612–2625

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Burg SP, Burg EA (1966) The interaction between auxin and ethylene and its role in plant growth. Proc Natl Acad Sci USA 55:262–269

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Kim YS, Lee JY, Kaufman PB, Kirakosyan A, Yun HS, Kim TW, Kim SY, Cho MH, Lee JS, Kim SK (2004) Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol Plant 121:666–673

    Article  CAS  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Guan C, Boonsirichai K, Masson PH (2002) Complex physiological and molecular processes underlying root gravitropism. Plant Mol Biol 49:305–317

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915

    Article  PubMed  CAS  Google Scholar 

  • Davenport TL, Morgan PW, Jordan WR (1980) Reduction of auxin transport capacity with age and internal water deficits in cotton petioles. Plant Physiol 65:1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Evans ML, Chang WK, Lee JS (1989) Modification of root gravitropism by ethylene (abstract No. 120). Gravit Space Biol Bull 2:59–60

    Google Scholar 

  • Friml J (2003) Auxin transport: shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Hensel W, Iversen TH (1980) Ethylene production during clinostat rotation and effect on root geotropism. Z Pflanzenphysiol 97:343–352

    CAS  Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

    Article  PubMed  CAS  Google Scholar 

  • Juniper BE, Groves S, Landau-Schacher B (1966) Root cap and the perception of gravity. Nature 209:93–94

    Article  Google Scholar 

  • Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. Crit Rev Plant Sci 19:551–573

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Edelmann RE, Wood PC (1999) Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies. Planta 209:96–103

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Chang WK, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94:1770–1775

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Hasenstein KH (2006) The onset of gravisensitivity in the embryonic root of flax. Plant Physiol 140:159–166

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Behringer FJ, Lomax TL (1999) Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato. Plant Physiol 120:897–906

    Article  PubMed  CAS  Google Scholar 

  • Mattoo A, Suttle J (1991) The plant hormone ethylene. CRC Press, Boca Raton

    Google Scholar 

  • Morgan P, Gausman H (1966) Effects of ethylene on auxin transport. Plant Physiol 41:45–52

    Article  PubMed  CAS  Google Scholar 

  • Muday GK (2001) Auxins and tropisms. J Plant Growth Regul 20:226–243

    Article  PubMed  CAS  Google Scholar 

  • Muday GK, Rahman A (2007) Auxin transport and the integration of gravitropic growth. In: Gilroy S, Masson P (eds) Plant tropisms. Blackwell Publishing, Oxford, pp 47–78

    Chapter  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Article  PubMed  CAS  Google Scholar 

  • Ottenschlaeger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991

    Article  Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13:1683–1697

    PubMed  CAS  Google Scholar 

  • Rorabaugh PA, Salisbury FB (1989) Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. Plant Physiol 91:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  Google Scholar 

  • Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127:193–252

    Article  PubMed  CAS  Google Scholar 

  • Sack FD (1997) Plastids and gravitropic sensing. Planta 203:S63–S68

    Article  PubMed  CAS  Google Scholar 

  • Salisbury FB, Gillespie L, Rorabaugh P (1988) Gravitropism in higher plant shoots. V. Changing sensitivity to auxin. Plant Physiol 88:1186–1194

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Suttle JC (1988) Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol 88:795–799

    Article  PubMed  CAS  Google Scholar 

  • Suttle JC (1991) Biochemical bases for the loss of basipetal IAA transport with advancing physiological age in etiolated Helianthus hypocotyls. Plant Physiol 96:875–880

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Gene Dev 15:2648–2653

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Sievers A (1979) Graviperception in multicellular organs. In: Haupt W, Feinleib M (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 573–600

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • Wheeler RM, White RG, Salisbury FB (1986) Gravitropism in higher plant shoots. IV. Further studies on participation of ethylene. Plant Physiol 82:534–542

    Article  PubMed  CAS  Google Scholar 

  • Zheng HQ, Staehelin LA (2001) Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells. Plant Physiol 125:252–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by the Truman State University and the National Science Foundation under NSF Grant nos. 0436348 and 0337769. We thank Dr. Karl Hasenstein and Dr. Tobias Baskin for helpful discussions and suggestions on the research, and Meghan Whitaker for help with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Ren, Yy. Ethylene Interacts with Auxin in Regulating Developmental Attenuation of Gravitropism in Flax Root. J Plant Growth Regul 31, 509–518 (2012). https://doi.org/10.1007/s00344-012-9261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9261-0

Keywords

Navigation