Skip to main content
Log in

Tolerance of Arabidopsis thaliana to the Allelochemical Protocatechualdehyde

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We investigated the effects of the secondary metabolite protocatechualdehyde (PCA, 3,4-dihydroxybenzaldehyde) on stress markers, including fluorescence parameters and the concentrations of pigments, free radicals, protein, and lipid peroxides, in adult plants of Arabidopsis thaliana. The content of proline, carotenoids, and chlorophylls a and b peaked 9 h after administration of 3 mM PCA (the highest concentration used in this study), although malonyldialdehyde and dry mass contents peaked 24 h following PCA treatment. Leaf staining revealed peak production of O2 between 30 and 90 min post-treatment and peak production of H2O2 between 1 and 9 h post-treatment. Several effects, including the observed furling of leaf margins (leaf rolling), the increases in proline content and dry to fresh weight ratio, and the oxidative burst, are reminiscent of the plant response to drought. Early dehydration in PCA-treated plants was confirmed by decreases in leaf water potential, relative water content, and stomatal opening in the first hours of treatment. Thus, PCA seems to be either inducing water deficiency stress (probably through action in the roots) or directly triggering antidrought defenses. In either case, plants showed tolerance to the concentrations employed in this study, with most of the parameters observed having recovered control values within a week of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Begg JE (1980) Morphological adaptation of leaves to water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley Interscience, New York, pp 33–42

    Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Chempakam B, Kasturi Hai KV, Rajagopal V (1993) Lipid peroxidation in relation to drought tolerance in coconut (Cocos nucijera L.). Plant Physiol Biochem 20:5–11

    Google Scholar 

  • Clarke JM (1986) Effect of leaf rolling on leaf water loss in Triticum spp. Can J Plant Sci 66:885–891

    Article  Google Scholar 

  • Deuner S, Alves JD, Zanandrea I, Pereira Goulart P, Silveira NM, de Castro Henrique P, Mesquita AC (2011) Stomatal behavior and components of the antioxidative system in coffee plants under water stress. Sci Agric 68:77–85

    Article  CAS  Google Scholar 

  • Duke SO, Rimando A, Scheffler B, Dayan FE (2002) Strategies for research in applied aspects of allelopathy. Plymouth. In: Reigosa MJ, Pedrol N (eds) Allelopathy: from molecules to ecosystems. Science Publishers, UK, pp 139–152

    Google Scholar 

  • Gershenzon J (2002) Secondary metabolism and plant defense. In: Taiz L, Zeiger E (eds) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, MA, pp 283–308

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gonzáles WL, Suárez LH, Molina-Montenegroa MA, Gianolia E (2008) Water availability limits tolerance of apical damage in the Chilean tarweed Madia sativa. Acta Oecol 34:104–110

    Article  Google Scholar 

  • González L (2001) Determination of water potential in leaves. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer, Dordrecht, pp 193–206

  • González L, Reigosa MJ (2001) Plant water status. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer, Dordrecht, pp 185–192

    Google Scholar 

  • Gzik A (1996) Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36:29–38

    Article  CAS  Google Scholar 

  • Hadaçek F (2002) Secondary metabolites as plant traits: Current assessment and future perspectives. Crit Rev Plant Sci 21:273–322

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) The chemistry of oxygen radicals and other oxygen-derived species. In: Free radicals in biology and medicine. Oxford University Press, New York, pp 20–64

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Station, Berkeley, CA, Circ No 347, p 142

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hsiao TC, O’Toole JC, Yambao EB, Turner N (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol 75:338–341

    Article  PubMed  CAS  Google Scholar 

  • Hsu YCh, Lin YL, Chiu YT, Shiao MS, Lee ChY, Huang YT (2005) Antifibrotic effects of Salvia miltiorrhiza on dimethylnitrosamine-intoxicated rats. J Biomed Sci 12:185–195

    Article  PubMed  CAS  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  PubMed  CAS  Google Scholar 

  • Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73:290–302

    Article  Google Scholar 

  • Kadioglu A, Turgut R (1999) Some biochemical changes during leaf rolling in Ctenanthe setosa (Marantaceae). Acta Physiol Plant 21:209–214

    Article  CAS  Google Scholar 

  • Kim KJ, Kim MA, Jung JH (2008) Antitumor and antioxidant activity of protocatechualdehyde produced from Streptomyces lincolnensis M-20. Arch Pharmacal Res 31:1572–1577

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl Notes 1:27–35

    Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox states and excitation energy fluxes. Photos Res 79:209–218

    Article  CAS  Google Scholar 

  • Kraus TE, McKersie BD, Fletcher RA (1995) Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J Plant Physiol 145:570–576

    Article  CAS  Google Scholar 

  • Lu Q, Wen X, Lu C, Zhang Q, Kuang T (2003) Photoinhibition and photoprotection in senescent leaves of field-grown wheat plants. Plant Physiol Biochem 41:749–754

    Article  CAS  Google Scholar 

  • Macías FA (1995) Allelopathy in the search for natural herbicide models. ACS Symp Ser 582:310–329

    Article  Google Scholar 

  • Macías FA, Molinillo MJG, Castellano D, Velasco RF (1999) Sesquiterpene lactones with potential use as natural herbicide models (I): trans, trans-Germacranolide. J Agric Food Chem 47:4407–4414

    Article  PubMed  Google Scholar 

  • Martínez-Peñalver A, Reigosa MJ, Sánchez-Moreiras AM (2011) Imaging chlorophyll a fluorescence reveals specific spatial distributions under different stress condition. Flora 206:836–844

    Article  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    PubMed  CAS  Google Scholar 

  • Meister MH, Bolhàr-Nordenkampf HB (2001) Stomata imprints. A new and quick method to count stomata and epidermic cells. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer, Dordrecht, pp 235–250

    Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • O’Toole JC, Cruz RT, Singh TN (1979) Leaf rolling and transpiration. Plant Sci Lett 16:111–114

    Article  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and F’v/F’m without measuring F’o. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Pedrol N, Ramos P (2001) Protein content quantification by Bradford method. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer, Dordrecht, pp 283–296

    Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Reigosa MJ, Pazos-Malvido E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol 33:1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Moreiras AM, Martínez-Peñalver A, Reigosa MJ (2011) Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. J Plant Physiol 168:863–870

    Article  PubMed  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Singh TN LG, Paleg LG, Aspinall D (1973) Stress metabolism. III. Variations in response to water deficit in the barley plant. Austral J Biol Sci 26:65–76

    Google Scholar 

  • Sivaramakrishnan S, Patell VZ, Flower DJ, Peacock JM (1988) Proline accumulation and nitrate reductase activity in contrasting sorghum lines during mid-season drought stress. Physiol Plant 74:418–426

    Article  CAS  Google Scholar 

  • Slatyer RO (1967) Plant-water relationships. Academic Press, London

    Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    Article  PubMed  CAS  Google Scholar 

  • Van Acker FAA, Schouten O, Haenen GRMM, Van der Vijgh WJF, Bast A (2000) Flavonoids can replace tocopherol as an antioxidant. FEBS Letters 473:145–148

    Google Scholar 

  • Wang S, Gao Z, Li E, Su C, Zhu H (2008) The application with protocatechualdehyde to improve anticoagulant activity and cell affinity of silk fibroin. Appl Surf Sci 225:486–488

    Article  Google Scholar 

  • Weatherley PE (1950) Studies in the water relations of the cotton plant. I. The field measurement of water deficit in leaves. New Phytol 49:81–97

    Article  Google Scholar 

  • Weber B, Hoesch L, Rast DM (1995) Protocatechualdehyde and other phenols as cell wall components of grapevine leaves. Phytochemistry 40:433–437

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wink M (2010) Introduction: biochemistry, physiology and ecological functions of secondary metabolites. In: Wink M (ed) Biochemistry of plant secondary metabolism, 2nd edn. Wiley-Blackwell, Oxford, pp 1–19

    Chapter  Google Scholar 

  • Yin Y, Li S, Liao W, Lu Q, Wen X, Lu C (2010) Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. J Plant Physiol 167:959–966

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Wang YW, Cheng YY (2006) Determination of protocatechuic aldehyde, danshensu, salvianolic acid B and gallic acid in chinese medicine ‘SUANGDAN’ granule by MEKC. Chromatographia 63:393–398

    Google Scholar 

  • Zhang J, Kirkham MB (1996) Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci 113:139–147

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

  • Zhang AL, Ye Q, Li BG, Qi HY, Zhang GL (2005) Phenolic and triterpene glycosides from the stems of Ilex litseaefolia. J Nat Prod 68:1531–1535

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Zhang Y, Ding XR, Chen SH, Yang J, Wang XJ, Jia GL, Chen HS, XCh Bo, Wang SQ (2006) Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo. Antivir Res 74:59–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adela M. Sánchez-Moreiras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Peñalver, A., Pedrol, N., Reigosa, M.J. et al. Tolerance of Arabidopsis thaliana to the Allelochemical Protocatechualdehyde. J Plant Growth Regul 31, 406–415 (2012). https://doi.org/10.1007/s00344-011-9250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9250-8

Keywords

Navigation