Skip to main content

Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA

Abstract

The reproductive development of the Christmas rose (Helleborus niger L.) is characterized by an uncommon feature in the world of flowering plants: after fertilization the white perianth becomes green and photosynthetically active and persists during fruit development. In the flowers in which fertilization was prevented by emasculation (unfertilized) or entire reproductive organs were removed (depistillated), the elongation of the peduncle was reduced by 20–30%, and vascular development, particularly lignin deposition in sclerenchyma, was arrested. Chlorophyll accumulation in sepals and their photosynthetic efficacy were up to 80% lower in comparison to fertilized flowers. Endogenous auxins were investigated in floral and fruit tissues and their potential roles in these processes are discussed. Analytical data of free indole-3-acetic acid, indole-3-ethanol (IEt), and seven amino acid conjugates were afforded by LC-MS/MS in floral tissues of fertilized as well as unfertilized and depistillated flowers. Among amino acid conjugates, novel ones with Val, Gly, and Phe were identified and quantified in the anthers, and in the fruit during development. Reproductive organs before fertilization followed by developing fruit at post-anthesis were the main source of auxin. Tissues of unfertilized and depistillated flowers accumulated significantly lower levels of auxin. Upon depistillation, auxin content in the peduncle and sepal was decreased to 4 and 45%, respectively, in comparison to fruit-bearing flowers. This study suggests that auxin arising in developing fruit may participate, in part, in the coordination of the Christmas rose peduncle elongation and its vascular development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Alabadí D, Blázquez MA, Carbonell J, Ferrándiz C, Pérez-Amador MA (2009) Instructive roles for hormones in plant development. Int J Dev Biol 53:1597–1608

    Article  PubMed  Google Scholar 

  • Aloni R (2004) The induction of vascular tissues by auxin. In: Davies PJ (ed) Plant hormones. Biosynthesis, signal transduction, action. Kluwer Academic Publishers, Dordrecht, pp 471–492

    Google Scholar 

  • Aloni R, Tollier MT, Monties B (1990) The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stem. Plant Physiol 94:1743–1747

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  PubMed  CAS  Google Scholar 

  • Andreae WA, Good NE (1955) The formation of indoleacetylaspartic acid in pea seedlings. Plant Physiol 30:380–382

    Article  PubMed  CAS  Google Scholar 

  • Ayele BT, Magnus V, Mihaljević S, Prebeg T, Čož-Rakovac R, Ozga JA, Reinecke DM, Mander LN, Kamiya Y, Yamaguchi S, Salopek-Sondi B (2010) Endogenous gibberellin profile during Christmas rose (Helleborus niger L.) flower and fruit development. J Plant Growth Regul 29:194–209

    Article  CAS  Google Scholar 

  • Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969

    Article  PubMed  CAS  Google Scholar 

  • Bialek K, Cohen JD (1989) Free and conjugated indole-3-acetic acid in developing bean seeds. Plant Physiol 91:775–779

    Article  PubMed  CAS  Google Scholar 

  • Burrell CC, Tyler JK (2006) Hellebores. A comprehensive guide. Timber Press, Portland, OR, p 296

    Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Zhao Y (2007) A role for auxin in flower development. J Integr Plant Biol 49:99–104

    Article  CAS  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • De Munk WJ (1979) Influence of plant growth regulators on the development of bulbous plants with special reference to organ relationship. Acta Hortic 91:207–219

    Google Scholar 

  • Dettmer J, Elo A, Helariutta Y (2009) Hormone interactions during vascular development. Plant Mol Biol 69:347–360

    Article  PubMed  CAS  Google Scholar 

  • Edelbluth E, Kaldewey H (1976) Auxin in scapes, flower buds, flower, and fruits of daffodil (Narcissus pseudonarcissus L.). Planta 131:285–291

    Article  CAS  Google Scholar 

  • Epstein E, Cohen JD, Slovin JP (2002) The biosynthetic pathway for indole-3-acetic acid changes during tomato fruit development. Plant Growth Regul 38:15–20

    Article  CAS  Google Scholar 

  • Finkelstein RR (2004) The role of hormones during seed development and germination. In: Davies PJ (ed) Plant hormones. Biosynthesis, signal transduction, action. Kluwer Academic Publishers, Dordrecht, pp 513–537

    Google Scholar 

  • Gabryszewska E, Saniewski M (1983) Auxin control of tulip stalk elongation in vitro. Sci Hortic Amsterdam 19:153–159

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. 1. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Yuan Z, Sun Y, Jing L, Huang H (2004) Characterizations of the uro mutant suggest that the URO gene is involved in the auxin action in Arabidopsis. Acta Bot Sin 46:846–853

    CAS  Google Scholar 

  • Hangarter RP, Good NE (1981) Evidence that IAA conjugates are slow-release sources of free IAA in plant tissues. Plant Physiol 68:1424–1427

    Article  PubMed  CAS  Google Scholar 

  • Hanks GR, Rees AR (1977) Stem elongation in tulip and narcissus: the influence of floral organs and growth regulators. New Phytol 78:579–591

    Article  CAS  Google Scholar 

  • Hess RJ, Carman JG, Banowetz GM (2002) Hormones in wheat kernels during embryony. J Plant Physiol 159:379–386

    Article  CAS  Google Scholar 

  • Ilić N, Magnus V, Ostin A, Sandberg G (1997) Stable-isotope labeled metabolites of the phytohormone, indole-3-acetic acid. J Label Compd Radiopharm 39:433–440

    Article  Google Scholar 

  • Jensen PJ, Bandurski RS (1994) Metabolism and synthesis of indole-3-acetic acid (IAA) in Zea mays. Plant Physiol 106:343–351

    PubMed  CAS  Google Scholar 

  • Kai K, Horita J, Wakasa K, Miyagawa H (2007) Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68:1651–1663

    Article  PubMed  CAS  Google Scholar 

  • Kohji J, Hagimoto H, Masuda Y (1979) Georeaction of the flower stalk in a poppy, Papaver rhoeas L. Plant Cell Physiol 20:375–386

    CAS  Google Scholar 

  • Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 127:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Srivastava GC, Dixit K (2008) Senescence in rose (Rosa hybrida L.): role of the endogenous anti-oxidant system. J Hortic Sci Biotechnol 83:125–131

    CAS  Google Scholar 

  • Laćan G, Magnus V, Šimaga Š, Iskrić S, Hall PJ (1985) Metabolism of tryptophol in higher and lower plants. Plant Physiol 78:447–454

    Article  PubMed  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R (2009) Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol 181:323–338

    Article  PubMed  Google Scholar 

  • Magnus V, Ozga JA, Reinecke DM, Pierson GL, Larue TA, Cohen JD, Brenner ML (1997) 4-Chloroindole-3-acetic acid and indole-3-acetic acid in Pisum sativum. Phytochemistry 46:675–681

    Article  CAS  Google Scholar 

  • Mathew B (1989) Hellebores. Alpine Garden Society, Lye End Link, St. John’s Woking, Surrey, UK. 180 p

  • Maxwell K, Johnson N (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe CR, Chalk L (1972) Descriptions of the families 1. Ranunculaceae. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons—leaves, stem and wood in relation to taxonomy with notes on economic uses, vol I. Clarendon Press, Oxford, pp 1–7

    Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic-acid and hydrogen-peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Niewiadomska E, Polzien L, Desel C, Rozpadek P, Miszalski Z, Krupinska K (2009) Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. J Plant Physiol 166:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Nishio S, Moriguchi R, Ikeda H, Takahashi H, Takahashi H, Fujii N, Guilfoyle TJ, Kanahama K, Kanayama Y (2010) Expression analysis of auxin efflux carrier family in tomato fruit development. Planta 232:755–764

    Article  PubMed  CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    Article  PubMed  Google Scholar 

  • Ohno H, Kako S (1991) Roles of floral organs and phytohormones in flower stalk elongation of Cymbidium (Orhidaceae). J Jpn Soc Hortic Sci 60:159–169

    Article  CAS  Google Scholar 

  • Okubo H, Uemoto S (1985) Changes in endogenous gibberellin and auxin activities during 1st internode elongation in tulip flower stalk. Plant Cell Physiol 26:709–719

    CAS  Google Scholar 

  • Op den Kelder P, Benschop M, De Hertogh AA (1971) Factors affecting floral stalk elongation of flowering tulips. J Am Soc Hortic Sci 96:603–605

    Google Scholar 

  • Østergaard L (2009) Don’t ‘leaf’ now. The making of a fruit. Curr Opin Plant Biol 12:36–41

    Article  PubMed  Google Scholar 

  • Östin A, Moritz T, Sandberg G (1992) Liquid chromatography/mass spectrometry of conjugates and oxidative metabolites of indole-3-acetic acid. Biol Mass Spectrom 21:292–298

    Article  Google Scholar 

  • Östin A, Kowalyczk M, Bhalerao RP, Sandberg G (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118:285–296

    Article  PubMed  Google Scholar 

  • Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81

    Article  CAS  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci 133:125–138

    Article  CAS  Google Scholar 

  • Pěnčík A, Rolčík J, Novák O, Magnus V, Barták P, Buchtík R, Salopek-Sondi B, Strnad M (2009) Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80:651–655

    Article  PubMed  Google Scholar 

  • Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B (2004) A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol 135:978–988

    Article  PubMed  CAS  Google Scholar 

  • Salopek-Sondi B, Magnus V (2007) Developmental studies in the Christmas rose (Helleborus niger L.). Int J Plant Dev Biol 1:151–159

    Google Scholar 

  • Salopek-Sondi B, Kovač M, Ljubešić N, Magnus V (2000) Fruit initiation in Helleborus niger L. triggers chloroplast formation and photosynthesis in the perianth. J Plant Physiol 157:357–364

    Article  CAS  Google Scholar 

  • Salopek-Sondi B, Kovač M, Prebeg T, Magnus V (2002) Developing fruit direct post-floral morphogenesis in Helleborus niger L. J Exp Bot 53:1949–1957

    Article  PubMed  CAS  Google Scholar 

  • Sancho MA, de Fochetti MS, Pliego F, Valpuesta V, Quesada MA (1996) Peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell Tissue Organ Cult 44:161–167

    Article  CAS  Google Scholar 

  • Saniewski M, De Munk WJ (1981) Hormonal control of shoot elongation in tulips. Sci Hortic 15:363–372

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological Studies, vol 100. Springer-Verlag, Berlin, pp 49–70

    Google Scholar 

  • Siegel BZ, Galston AW (1967) Isoperoxidases of Pisum sativum. Plant Physiol 42:221–226

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Handa AK (2005) Hormonal regulation of tomato fruit development: a molecular perspective. J Plant Growth Regul 24:67–82

    Article  CAS  Google Scholar 

  • Sundberg E, Østergaard L (2009) Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 1:a001628

    Article  PubMed  Google Scholar 

  • Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol 123:589–595

    Article  PubMed  CAS  Google Scholar 

  • Tarkowski P, Tarkowská D, Novák O, Mihaljević S, Magnus V, Strnad M, Salopek-Sondi B (2006) Cytokinins in the perianth, carpels and developing fruit of Helleborus niger L. J Exp Bot 57:2237–2247

    Article  PubMed  CAS  Google Scholar 

  • Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stem. Plant Physiol 134:769–776

    Article  PubMed  CAS  Google Scholar 

  • Xu RY, Niimi Y, Ohta Y (2008) Changes in diffusible indole-3-acetic acid from various parts of tulip plant during rapid elongation of the flower stalk. Plant Growth Regul 54:81–88

    Article  CAS  Google Scholar 

  • Yuan Z, Yao X, Zhang D, Sun Y, Huang H (2007) Genome-wide expression profiling in seedlings of the Arabidopsis mutant uro that is defective in the secondary cell wall formation. J Integr Plant Biol 49:1754–1762

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This manuscript is dedicated to Dr. Sc. Volker Magnus, who was involved in the research of Christmas rose development for many years. This work was supported by research grants no. 098-0982913-2829, 098-0982913-2838, 073-0731674-0841, and 073-0731674-1673 (Croatian Ministry of Science, Education and Sports), by grant MSM6198959216 (Ministry of Education, Youth and Sports of the Czech Republic) and by grant KAN200380801 (Academy of Sciences of the Czech Republic). We thank the staff of Pharmaceutical Botanical Garden “Fran Kušan” who made their Christmas rose collections available for our experiments, Dr. Sc. Kroata Hazler-Pilepić for constructive discussions connected to vascular development, and Dr. Sc. Marija Mary Sopta for critical reading of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branka Salopek-Sondi.

Additional information

Ana Brcko and Aleš Pěnčík contributed equally to this work.

Volker Magnus deceased in 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brcko, A., Pěnčík, A., Magnus, V. et al. Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA. J Plant Growth Regul 31, 63–78 (2012). https://doi.org/10.1007/s00344-011-9220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9220-1

Keywords

  • Auxin
  • Indole-3-acetic acid
  • Amide conjugates
  • Christmas rose
  • Helleborus niger L.
  • Flower and fruit development
  • Perianth greening
  • Peduncle elongation
  • Vascular system