Skip to main content
Log in

Nebularine Affects Plant Growth and Development but does not Interfere with Cytokinin Signaling

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nebularine is known for its high cytotoxicity in animals, whereas in plants it was originally believed to be an anticytokinin. In this study we show that in classical cytokinin bioassays, nebularine antagonized cytokinin function in senescence and callus biotests but not in the Amaranthus bioassay. Nebularine reversed the inhibitory effect of cytokinin on lateral root formation in Arabidopsis seedlings, and when applied alone caused increased lateral root formation and shortening of the main root. Systematic spraying of Arabidopsis plants with nebularine led to yellowing and formation of purple pigments, local drying, and withering, although younger plants showed a greater resilience. Comparison of nebularine cytotoxicity in plant and animal cells showed that the growth of tobacco BY-2 cells was inhibited with only about tenfold lower efficacy than mammalian cell lines. Most importantly, direct binding assay with Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 showed that nebularine did not compete for binding with the natural cytokinin trans-zeatin. Although nebularine reduced cytokinin-induced expression of the cytokinin reporter ARR5:GUS in planta, the same effect was observed for DR5:GUS, an auxin reporter gene. Taken together, the results indicate that the mode of action of nebularine does not involve cytokinin signaling and that the anticytokinin-like effect is rather a consequence of the inhibition of various processes as described for animal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Backer WS, Khan JA (2004) Effects of pharmacological agents on the activity of rat kidney adenylyl cyclase. Pak J Med Sci 20:41–45

    Google Scholar 

  • Biesele JJ, Slautterback MS, Margolis M (1955) Unsubstituted purine and its riboside as toxic antimetabolites in mouse tissue cultures. Cancer 8:87–96

    Article  PubMed  CAS  Google Scholar 

  • Bohr V (1978) Effects of purine riboside on nucleic acid synthesis in ascites cells. Biochim Biophys Acta 519:125–137

    PubMed  CAS  Google Scholar 

  • Brink NG (1953) Beef liver glucose dehydrogenase. 1. Purification and properties. Acta Chem Scand 7:1081–1089

    Article  CAS  Google Scholar 

  • Brown EG, Konuk M (1994) Plant cytotoxicity of nebularine (purine riboside). Phytochemistry 37:1589–1592

    Article  CAS  Google Scholar 

  • D’Agostino IB, Deruère J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    Article  PubMed  Google Scholar 

  • Das SR, Baer HP (1991) Inhibition of axenically grown Entamoeba histolytica by purine nucleoside analogs and actions of natural nucleosides. Trop Med Parasitol 42:161–163

    PubMed  CAS  Google Scholar 

  • Doležal K, Popa I, Kryštof V, Spíchal L, Fojtíková M, Holub J, Lenobel R, Schmülling T, Strnad M (2006) Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorg Med Chem 14:875–884

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg L, Hedström H, Löfgren N, Takman B (1946) Antibiotic effect of agarics on tubercle bacilli. Svensk Kem Tidskr 58:267

    Google Scholar 

  • el Kouni MH, Cha S (1987) Metabolism of adenosine analogues by Schistosoma mansoni and the effect of nucleoside transport inhibitors. Biochem Pharmacol 36:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Frank KB, Cheng YC (1986) Inhibition of herpes simplex virus DNA polymerase by purine ribonucleoside monophosphates. J Biol Chem 261:1510–1513

    PubMed  CAS  Google Scholar 

  • Guranowski A (1982) Purine catabolism in plants: Purification and some properties of inosine nucleosidase from yellow lupin (Lupinus luteus L.) seeds. Plant Physiol 70:344–349

    Article  PubMed  CAS  Google Scholar 

  • Guranowski A, Montgomery JA, Cantoni GL, Chiang PK (1981) Adenosine analogues as substrates and inhibitors of S-adenosylohomocysteine hydrolase. Biochemistry 20:110–115

    Article  PubMed  CAS  Google Scholar 

  • Havlíček L, Fuksová K, Kryštof V, Orság M, Vojtěšek B, Strnad M (2005) 8-Azapurines as new inhibitors of cyclin-dependent kinases. Bioorg Med Chem 13:5399–5407

    Article  PubMed  CAS  Google Scholar 

  • Henderson JF (1968) Purine nucleoside inhibitors of purine biosynthesis de novo. Cancer Chemo Rep 2:375–382

    Google Scholar 

  • Hoffman PD, Wang H, Lawrence CW, Iwai S, Hanaoka F, Hays JB (2005) Binding of MutS mismatch repair protein to DNA containing UV photoproducts, “mismatched” opposite Watson-Crick and novel nucleotides, in different DNA sequence contexts. DNA Repair 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Holub J, Hanuš J, Hanke DE, Strnad M (1998) Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul 26:109–115

    Article  CAS  Google Scholar 

  • Kozlowska M, Smolenski RT, Makarewicz W, Hoffmann C, Jastorff B, Swierczynski J (1999) ATP depletion, purine riboside triphosphate accumulation and rat thymocyte death induced by purine riboside. Toxicol Lett 104:171–181

    Article  PubMed  CAS  Google Scholar 

  • Kryštof V, Lenobel R, Havlíček L, Kuzma M, Strnad M (2002) Synthesis and biological activity of olomoucine II. Bioorg Med Chem Lett 12:3283–3286

    Article  PubMed  Google Scholar 

  • Kulka RG (2006) Cytokinins inhibit epiphyllous plantlet development on leaves of Bryophyllum (Kalanchoë) marnierianum. J Exp Bot 57:4089–4098

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Benková E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Löfgren N, Lüning B, Hedström H (1954) The isolation of nebularine and the determination of its structure. Acta Chem Scand 8:670–680

    Article  Google Scholar 

  • Lupidi G, Riva F, Cristalli G, Grifantini M (1982) Inhibition of adenosine deaminase by deaza derivatives of adenosine and purine riboside. Ital J Biochem 31:396–403

    PubMed  CAS  Google Scholar 

  • Lynch TP, Jakobs ES, Paran JH, Paterson AR (1981) Treatment of mouse neoplasm with high doses of tubercidin. Cancer Res 41:3200–3204

    PubMed  CAS  Google Scholar 

  • Mlejnek P, Procházka S (2002) Caspase activation and isopentenyladenosine-induced apoptosis in tobacco BY-2 cells. Planta 215:158–166

    Article  PubMed  CAS  Google Scholar 

  • Nair V, Chamberlain SD (1984) Reductive deamination of aminopurine nucleosides. Synthesis 1984:401–403

    Article  Google Scholar 

  • Osborne WR, Spencer N (1973) Partial purification and properties of the common inherited forms of adenosine deaminase from human erythrocytes. Biochem J 133:117–123

    PubMed  CAS  Google Scholar 

  • Paterson AR, Paran JH, Yang S, Lynch TP (1979) Protection of mice against lethal dosages of nebularine by nitrobenzylthioinosine, an inhibitor of nucleoside transport. Cancer Res 39:3607–3611

    PubMed  CAS  Google Scholar 

  • Pospíšilová H, Frébort I (2007) Aminohydrolases acting on adenine, adenosine and their derivatives. Biomed Papers 151:3–10

    Google Scholar 

  • Pospíšilová H, Šebela M, Novák O, Frébort I (2008) Hydrolytic cleavage of N 6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep 28:335–347

    Article  PubMed  CAS  Google Scholar 

  • Price CE, Murray AW (1969) Purine metabolism in germinating wheat embryos. Biochem J 115:129–133

    PubMed  CAS  Google Scholar 

  • Rahman MS, Humayun MZ (1997) Nebularine (9–2′-deoxy-β-D-ribofuranosylpurine) has the template characteristics of adenine in vivo and in vitro. Mutat Res 377:263–268

    PubMed  CAS  Google Scholar 

  • Romanov GA, Kieber JJ, Schmülling T (2002) A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett 515:39–43

    Article  PubMed  CAS  Google Scholar 

  • Romanov GA, Spíchal L, Lomin SN, Strnad M, Schmülling T (2005) A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. Anal Biochem 347:129–134

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 3, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor, p A2.2

    Google Scholar 

  • Schmülling T (2002) New insights into the functions of cytokinins in plant development. J Plant Growth Regul 21:40–49

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Snyder FF, Fontenelle LJ, Henderson JF (1974) Improved methods for the study of drug effects on purine metabolism and their application to nebularine and 7-deazanebularine. Biochem Pharmacol 23:2023–2035

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Garmer FH, Provenzano MD, Fujimoto FK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchonic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  PubMed  Google Scholar 

  • Spíchal L, Kryštof V, Paprskářová M, Lenobel R, Stýskala J, Binarová P, Cenklová V, De Veylder L, Inzé D, Kontopidis G, Fischer PM, Schmülling T, Strnad M (2007) Classical anticytokinins do not interact with cytokinin receptors but inhibit cyclin-dependent kinases. J Biol Chem 282:14356–14363

    Article  PubMed  Google Scholar 

  • Spíchal L, Werner T, Popa I, Riefler M, Schmülling T, Strnad M (2009) The purine derivative PI-55 blocks cytokinin action via receptor inhibition. FEBS J 276:244–253

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42:107–113

    Article  PubMed  CAS  Google Scholar 

  • Tamm I, Folkers K, Ch Shunk (1956) Certain benzimidazoles, benzenes, and ribofuranosylpurines as inhibitors of influenza B virus multiplication. J Bacteriol 72:59–64

    Article  PubMed  CAS  Google Scholar 

  • Tokuji Y, Kuriyama K (2003) Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). J Plant Physiol 160:133–141

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Weston SA, Parish CR (1990) New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J Immunol Methods 133:87–97

    Article  PubMed  CAS  Google Scholar 

  • Wood SG, Ubasawa A, Martin D, Jiřičný J (1986) Guanine and adenine analogues as tools in the investigation of the mechanisms of mismatch repair in E. coli. Nucleic Acids Res 14:6591–6602

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tomáš Pospíšil for synthesis of nebularine and Dr. Vladimír Kryštof for performing the human cell viability assay and determing the competition of nebularine toward ATP on CDK2 and ABL. We are greatful to Prof. David Morris for helpful suggestions and critical reading of the manuscript. This work was supported in part by the grants MSM 6198959216 from the Ministry of Education, Youth and Sports Czech Republic, and 522/06/0022, 522/08/H003, and 522/07/P197 from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Pospíšilová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospíšilová, H., Nisler, J., Spíchal, L. et al. Nebularine Affects Plant Growth and Development but does not Interfere with Cytokinin Signaling. J Plant Growth Regul 28, 321–330 (2009). https://doi.org/10.1007/s00344-009-9096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9096-5

Keywords

Navigation