Skip to main content

Advertisement

Log in

Identification and Quantification of Several Mammalian Steroid Hormones in Plants by UPLC-MS/MS

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We have developed an effective method for the isolation, identification, and quantification of several mammalian steroid hormones and their metabolites in different plant tissues. The purification protocol was based on solid-phase extraction (SPE) combined with immunoaffinity chromatography (IAC) using immobilized generic polyclonal anti-Δ4-3-keto-steroid antibodies covalently bound to Affi-Gel 10 sorbent. The antibodies were characterized by means of enzyme-linked immunosorbent assay (ELISA). The detection limit of the ELISA was 6.0 × 10−10 mol L−1 and cross-reactivity with most Δ4-3-keto-steroids was very high as predicted (68–122%). The IAC allowed fast, single-step purification of different plant extracts prior to analysis by ultra-performance liquid chromatography-electrospray tandem mass spectrometry [UPLC-ESI(+)-MS/MS]. In multiple-reaction-monitoring (MRM) mode, the detection limit of the method for most of the steroids analyzed was close to 10 fmol and the response was linear up to 50 pmol injected. The analytical accuracy was validated using tobacco leaf samples spiked with known amounts of authentic and deuterium-labeled standards. The newly developed method was capable of detecting and quantifying at least 12 specified steroid compounds in plant extracts. In the analyzed extracts from three plant species, that is, common foxglove (Digitalis purpurea L.), tobacco (Nicotiana tabacum L.), and elecampane inula (Inula helenium L.), four endogenous steroids were detected, identified, and quantified. Progesterone was found in all three plants at concentrations comparable to those reported in previous studies. Three other steroids, androstendione, 17α-hydroxyprogesterone, and 16-dehydroprogesterone, were identified for the first time in plant extracts. 17α-Hydroxyprogesterone and 16-dehydroprogesterone occurred at significant concentrations in D. purpurea, whereas androstendione was found in N. tabacum and I. helenium but not in D. purpurea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennett RD, Heftmann E (1965) Biosynthesis of Holarrhena alkaloids from pregnenolone and progesterone. Phytochemistry 4:873–879

    Article  CAS  Google Scholar 

  • Bennett RD, Ko ST, Heftmann E (1966) Isolation of estrone and cholesterol from the date palm, Phoenix dactylifera L. Phytochemistry 5:231–235

    Article  CAS  Google Scholar 

  • Bennett RD, Sauer HH, Heftmann E (1968) Progesterone metabolism in Digitalis lanata. Phytochemistry 7:41–50

    Article  CAS  Google Scholar 

  • Bonner J, Axtman G (1937) The growth of plant embryos in vitro. Preliminary experiments on the role of accessory substances. Proc Natl Acad Sci USA 23:453–457

    Article  PubMed  CAS  Google Scholar 

  • Bosch AMG, Hollande FC, Woods GF (1974) Specificities of antisera against testosterone linked to albumin at different positions (C3, C11, C17). Steroids 23:699–711

    PubMed  CAS  Google Scholar 

  • Caspi E, Lewis DO (1967) Progesterone: its possible role in the biosynthesis of cardenolides in Digitalis lanata. Science 156:519–520

    Article  PubMed  CAS  Google Scholar 

  • Dohrn M, Faure W, Poll H, Blotevogel W (1926) Tokokinine, Stoff mit sexualhormonartiger Wirkung aus Pflanzenzellen. Med Klin 22:1417–1419

    Google Scholar 

  • Fantl VE, Wang DY (1983) Simultaneous production of monoclonal antibodies to dehydroepiandrosterone, oestradiol, progesterone and testosterone. J Endocrinol 100:367–376

    Article  Google Scholar 

  • Ferguson PL, Iden CR, McElroy AE, Brownawell BJ (2001) Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC–Electrospray–MS. Anal Chem 73:3890–3895

    Article  PubMed  CAS  Google Scholar 

  • Gaskell SJ, Brownsey BG (1983) Immunoadsorption to improve gas chromatography/high-resolution mass spectrometry of estradiol 17β in plasma. Clin Chem 29:677–680

    PubMed  CAS  Google Scholar 

  • Gawienowski AM, Gibbs CC (1968) Identification of cholesterol and progesterone in apple seeds. Steroids 12:545–550

    Article  PubMed  CAS  Google Scholar 

  • Geuns JMC (1978) Steroid hormones and plant growth and development. Phytochemistry 17:1–14

    Article  CAS  Google Scholar 

  • Graves JMH, Smith WK (1967) Transformation of pregnenolone and progesterone by cultured plant cells. Nature 214:1248

    Article  PubMed  CAS  Google Scholar 

  • Gross H, Bilk L (1968) Zur reaktion N-hydroxysuccinimid mit dicyklohexylcarbodiimid. Tetrahedron 24:6935–6939

    Article  CAS  Google Scholar 

  • Gruz J, Novak O, Strnad M (2008) Rapid analysis of phenolic acids in beverages by UPLC-MS/MS. Food Chem 111:789–794

    Article  CAS  Google Scholar 

  • Hauserova E, Swaczynova J, Dolezal K, Lenobel R, Popa I, Hajduch M, Vydra D, Fuksova K, Strnad M (2005) Batch immunoextraction method for efficient purification of aromatic cytokinins. J Chromatogr A 1100:116–125

    Article  PubMed  CAS  Google Scholar 

  • Hernando MD, Ferrer C, Ulaszewska M, Garcia-Reyes JF, Molina-Diaz A, Fernandez-Alba AR (2007) Application of high-performance liquid chromatography–tandem mass spectrometry with a quadrupole/linear ion trap instrument for the analysis of pesticide residues in olive oil. Anal Bioanal Chem 389:1815–1831

    Article  PubMed  CAS  Google Scholar 

  • Hradecka V, Novak O, Havlicek L, Strnad M (2007) Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography–mass spectrometry. J Chromatogr B 847:162–173

    Article  CAS  Google Scholar 

  • Iino M, Nomura T, Tamaki Y, Yamada Y, Yoneyama K, Takeuchi Y, Mori M, Asami T, Nakano T, Yokota T (2007) Progesterone: its occurence in plants and involvement in plant growth. Phytochemistry 68:1664–1673

    Article  PubMed  CAS  Google Scholar 

  • Janeczko A, Skoczowski A (2005) Mammalian sex hormones in plants. Folia Histochem Cytobiol 43:71–79

    PubMed  CAS  Google Scholar 

  • Kuronen P, Vaananen T, Pehu E (1999) Reversed-phase liquid chromatographic separation and simultaneous profiling of steroidal glycoalkaloids and their aglycones. J Chromatogr A 25:25–35

    Article  Google Scholar 

  • Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Bunker AM, Fitzgerald RL, Meikle AW (2006a) Performance characteristic of a novel tandem mass spectrometry assay for serum testosterone. Clin Chem 52:120–128

    Article  PubMed  CAS  Google Scholar 

  • Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM, Meikle AW (2006b) Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem 52:1559–1567

    Article  PubMed  CAS  Google Scholar 

  • Li J, Biswas MG, Chao A, Russel DW, Chory J (1997) Conservation of function between mammalian and plant steroid 5α-reductases. Proc Natl Acad Sci USA 94:3554–3559

    Article  PubMed  CAS  Google Scholar 

  • Li X, Xiong Z, Ying X, Cui L, Zhu W, Li F (2006) A rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometric method for the qualitative and quantitative analysis of the constituents of the flower Trollius ledibouri Reichb. Anal Chim Acta 580:170–180

    Article  PubMed  CAS  Google Scholar 

  • Lindemann P, Luckner M (1997) Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. Phytochemistry 46:507–513

    Article  CAS  Google Scholar 

  • Ma YC, Kim HY (1997) Determination of steroids by liquid chromatography mass spectrometry. J Am Soc Mass Spectrom 8:1010–1020

    Article  CAS  Google Scholar 

  • Milanesi L, Monje P, Boland R (2001) Presence of estrogen and estrogen receptor-like proteins in Solanum glaucophyllum. Biochem Biophys Res Commun 289:1175–1179

    Article  PubMed  CAS  Google Scholar 

  • Novak O, Tarkowski P, Tarkowska D, Dolezal K, Lenobel R, Strnad M (2003) Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Anal Chim Acta 480:207–218

    Article  CAS  Google Scholar 

  • Novak O, Hauserova E, Amakorova P, Dolezal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69:2214–2224

    Article  PubMed  CAS  Google Scholar 

  • Pouzar V, Cerny I (1994) Preparation of 17(E)-3β-hydroxyandrost-5-ene-17-one (O-carboxymethyl)oxime derivatives with short peptide chain. Collect Czech Chem Commun 59:2042–2056

    Article  Google Scholar 

  • Rosati F, Danza G, Guarna A, Cini N, Racchi ML, Serio M (2005) New evidence of similarity between human and plant steroid metabolism: 5α-reductase activity in Solanum malacoxylon. Endocrinology 144:220–229

    Article  Google Scholar 

  • Saden-Krehula M, Kustrak D, Blazevic N (1991) Δ4-3-ketosteroids in flowers and leaves of Vitex agnus-castus. Acta Pharm Jugoslavica 41:237–241

    CAS  Google Scholar 

  • Sauer HH, Bennett RD, Heftmann E (1967) Pregnenolone metabolism in Digitalis lanata. Phytochemistry 6:1521–1526

    Article  CAS  Google Scholar 

  • Schlüsener MP, Bester K (2005) Determination of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants utilising high-performance liquid chromatography/tandem mass spectrometry with electrospray and atmospheric pressure chemical ionisation. Rapid Commun Mass Spectrom 19:3269–3278

    Article  PubMed  Google Scholar 

  • Schmidt G, Steinhart H (2002) Impact of extraction solvents on steroid contents determined in beef. Food Chem 76:83–88

    Article  CAS  Google Scholar 

  • Seaman FC (1982) Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48:121–595

    Article  CAS  Google Scholar 

  • Seidel S, Kreis W, Reinhard E (1990) Δ5-3β-hydroxysteroid dehydrogenase/Δ5-Δ4-ketosteroid isomerase (3β-HSD), a possible enzyme of cardiac glycoside biosynthesis, in cell cultures and plants of Digitalis lanata Ehrh. Plant Cell Rep 8:621–624

    Article  CAS  Google Scholar 

  • Shimada K, Mitamura K, Higashi T (2001) Gas chromatography and high performance liquid chromatography of natural steroids. J Chromatogr A 935:141–172

    Article  PubMed  CAS  Google Scholar 

  • Skarzynski B (1933) An oestrogenic substance from plant material. Nature 131:766

    CAS  Google Scholar 

  • Skliar M, Curino A, Milanesi E, Benassati S, Boland R (2000) Nicotiana glauca: another plant species containing vitamin D-3 metabolites. Plant Sci 156:193–199

    Article  PubMed  CAS  Google Scholar 

  • Storbeck KH, Kolar NW, Stander M, Swart AC, Prevoo D, Swart P (2008) The development of an ultra performance liquid chromatography-coupled atmospheric pressure chemical ionization mass spectrometry assay for seven adrenal steroids. Anal Biochem 372:11–20

    Article  PubMed  CAS  Google Scholar 

  • Strnad M, Hanus J, Vanek T, Kaminek M, Ballantine JA, Fussel B, Hanke DE (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus x canadensis Moench, cv. Robusta). Phytochemistry 45:213–218

    Article  CAS  Google Scholar 

  • van Aerden C, Debrauwer L, Tabet JC (1998) Analysis of nucleoside-estrogen adducts by LC-ESI-MS–MS. Analyst 123:2677–2680

    Article  Google Scholar 

  • van Rhijn JA, Heskamp HH, Davelaar E, Jordi W, Leloux MS, Brinkman UAT (2001) Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A 929:31–42

    Article  Google Scholar 

  • Vulliet E, Baugros JB, Flament-Waton MM, Grenier-Loustalot MF (2007) Analytical methods for the determination of selected steroid sex hormones and corticosteroids in wastewater. Anal Bioanal Chem 387:2143–2151

    Article  PubMed  CAS  Google Scholar 

  • Wendroth S, Seitz UH (1990) Characterization and localization of progesterone 5α-reductase from cell cultures of foxglove (Digitalis lanata Ehrh.). Biochem J 266:41–46

    PubMed  CAS  Google Scholar 

  • Yang XH, Xu ZH, Xue HW (2005) Arabidopsis Membrane Steroid Binding Protein 1 is involved in inhibition of cell elongation. Plant Cell 17:116–131

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Baba J, Koba S (1984) Purification and separation of eight steroidal plant-growth regulators from Dolichos lablab seed. Agric Biol Chem 48:2529–2534

    CAS  Google Scholar 

  • Young IJ, Knights BA, Hillman JR (1977) Oestradiol and its biosynthesis in Phaseolus vulgaris L. Nature 267:249

    Article  Google Scholar 

  • Zhao XJ, Wang WZ, Wang JS, Yang J, Xu GW (2006) Urinary profiling investigation of metabolites with cis-diol structure from cancer patients based on UPLC–MS and HPLC–MS as well as multivariate statistical analysis. J Separation Sci 29:2444–2451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 6198959216) and the Grant Agency of the Academy of Sciences of the Czech Republic (KAN 200380801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Strnad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simerský, R., Novák, O., Morris, D.A. et al. Identification and Quantification of Several Mammalian Steroid Hormones in Plants by UPLC-MS/MS. J Plant Growth Regul 28, 125–136 (2009). https://doi.org/10.1007/s00344-009-9081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9081-z

Keywords

Navigation