Skip to main content
Log in

Responses of Chrysanthemum Cells to Mechanical Stimulation Require Intact Microtubules and Plasma Membrane–Cell Wall Adhesion

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant cells are highly susceptible and receptive to physical factors, both in nature and under experimental conditions. Exposure to mechanical forces dramatically results in morphological and microstructural alterations in their growth. In the present study, cells from chrysanthemum (Dendranthema morifolium) were subjected to constant pressure from an agarose matrix, which surrounded and immobilized the cells to form a cell-gel block. Cells in the mechanically loaded blocks elongated and divided, with an axis preferentially perpendicular to the direction of principal stress vectors. After a sucrose-induced plasmolysis, application of peptides containing an RGD motif, which interferes with plasma membrane-cell wall adhesion, reduced the oriented growth under stress conditions. Moreover, colchicines, but not cytochalasin B, abolished the effects of mechanical stress on cell morphology. Cellulose staining revealed that mechanical force reinforces the architecture of cell walls and application of mechanical force, and RGD peptides caused aggregative staining on the surface of plasmolyzed protoplasts. These results provide evidence that the oriented cell growth in response to compressive stress requires the maintenance of plasmalemma-cell wall adhesion and intact microtubules. Stress-triggered wall development in individual plant cells was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Baluska F, Jasik J, Edelmann HG, Salajova T, Volkmann D. 2001. Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev Biol 231:113–124

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Samaj J, Wojtaszek P, Volkmann D, Menzel D. 2003. Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    CAS  Google Scholar 

  • Baskin TI, Meekes HTHM, Liang BM, Sharp RE. 1999. Regulation of growth anisotropy in well-watered and water-stressed maize roots. II. Role of cortical microtubules and cellulose microfibrils. Plant Physiol 119:681–692

    Article  PubMed  CAS  Google Scholar 

  • Biddington NL. 1986. The effects of mechanically-induced stress in plants—a review. Plant Growth Regul 4:103–123

    Article  CAS  Google Scholar 

  • Bonn D, Hellay H, Prochnow M, Ben-Djemiaa K, Meunier J. 1998. Delayed fracture of an inhomogeneous soft solid. Science 280:265–267

    Article  PubMed  Google Scholar 

  • Braam J. 2005. In touch: plant responses to mechanical stimuli. New Phytologist 165:373–389

    Article  PubMed  Google Scholar 

  • Canut H, Carrasco A, Galaud J, Cassan C, Bouyssou H, et al. 1998. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana link the cell wall. Plant J 16:63–71

    Article  PubMed  CAS  Google Scholar 

  • Chiu JJ, Chen LJ, Chen CN, Lee PL, Lee C. 2004. A model for studying the effect of shear stress on interaction between vascular endothelial cells and smooth muscle cells. J Biomech 37:531–539

    Article  PubMed  Google Scholar 

  • Coutand C, Julien JL, Moulia B, Mauget JC, Guitard D. 2000. Biomechanical study of the effect of a controlled bending on tomato stem elongation: global mechanical analysis. J Exp Bot 51:1813–1824

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt B, Gimmler H. 2000. Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

    Article  PubMed  CAS  Google Scholar 

  • Geiger B, Bershadsky A. 2001. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592

    Article  PubMed  CAS  Google Scholar 

  • Gertel ET, Green PB. 1977. Cell growth patterns and wall microfibrillar arrangement: experiments with Nitella. Plant Physiol 60:247–254

    PubMed  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E. 1999. Integrin signaling. Science 285:1028–1032

    Article  PubMed  CAS  Google Scholar 

  • Gus-Mayer S, Nation B, Hahlbrock K, Schmelzer E. 1998. Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci USA 95:8398–8403

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheng AY. 2001. Polarized cell growth in higher plant. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Holdaway NJ, White RG, Overall RL. 1995. Is the recovery of microtubule orientation in pea roots dependent on the cell wall? Cell Biol Int 19:913–919

    Article  Google Scholar 

  • Hussey PJ, Allwood EG, Smertenko AP. 2002. Actin-binding protein in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Philos Trans R Soc Lond B 357:791–798

    Article  CAS  Google Scholar 

  • Ingber DE. 2003. Tensegrity. Cell structure and hierarchical systems biology. J Cell Sci 116:157–1173

    Google Scholar 

  • Jaffe MJ. 1973. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta 114:143–157

    Article  Google Scholar 

  • Jaffe MJ, Forbes S. 1993. Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul 12:313–324

    Article  PubMed  CAS  Google Scholar 

  • Kennard JL, Cleary AL. 1997. Pre-mitotic nuclear migration in subsidiary mother cells of Tradescantia occurs in G1 of the cell cycle and requires F-actin. Cell Motil Cytoskel 36:55–67

    Article  CAS  Google Scholar 

  • Komis G, Apostolakos P, Galatis B. 2002. Hyperosmotic stress-induced actin filament reorganization in leaf cells of Chlorophyton comosum. J Exp Bot 53:1699–1710

    Article  PubMed  CAS  Google Scholar 

  • Lee-Stadelmann OY, Bushnell WR, Stadelmann EJ. 1984. Changes of plasmolysis form in epidermal cells of Hordeum vulgare infected by Erysiphe graminis: evidence for increased membrane-wall adhesion. Can J Bot 62:1714–1723

    Article  Google Scholar 

  • Lintihac PM, Vesecky TB. 1984. Stress-induced alignment of division plane in plant tissue grown in vitro. Nature 307:363–364

    Article  Google Scholar 

  • Lloyd CW, Traas JA. 1988. The role of F-actin in determining the division plane of carrot suspension cells. Drug Studies Dev 102:211–221

    CAS  Google Scholar 

  • Lynch TM, Lintilhac PM. 1997. Mechanical signals in plant development: a new method for single cell studies. Dev Biol 181:246–256

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Ishida N. 1967. Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem 62:276–278

    PubMed  CAS  Google Scholar 

  • Martin C, Bhatt K, Baumann K. 2001. Shaping in plant cells. Curr Opin Plant Biol 4:540–549

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Hulskamp M.2002 Microtubules and microfilaments in cell morphogenesis in higher plants. Curr Biol 12:R669–R676

    Article  PubMed  CAS  Google Scholar 

  • Meijer M, Murray JAH. 2001. Cell cycle controls and the development of plant form. Curr Opin Plant Biol 4:44–49

    Article  PubMed  CAS  Google Scholar 

  • Mellersh DG, Heath MC. 2001. Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration. Plant Cell 13:413–424

    Article  PubMed  CAS  Google Scholar 

  • Nagata H, Takebe I. 1970. Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–308

    Article  Google Scholar 

  • Normand V, Lootens DL, Amici E, Plucknett KP, Aymard P. 2000. New insight into agarose gel mechanical properties. Biomacromolecules 1:730–738

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ. 1994. Tansley Review No. 67. Plasmolysis: new insights into an old process. New Phytol 126:571–591

    Article  CAS  Google Scholar 

  • Peters WS, Hagemann W, Tomos AD. 2000. What makes plants different? Principles of extracellular matrix function in “soft” plant tissues. Comp Biochem Physiol A 125:151–167

    Article  CAS  Google Scholar 

  • Reuzeau C, Pont-Lezica R. 1995. Comparing plant and animal extracellular matrix-cytoskeleton connections: are they alike? Protoplasma 186:113–121

    Article  CAS  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, et al. 2001. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E., 1996. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Pierschbacher MD. 1987. New perspective in cell adhesion: RGD and intergrins. Science (Wash DC) 238:491–497

    Article  CAS  Google Scholar 

  • Sato Y, Kadota A, Wada M, 1999. Mechanically induced avoidance response of chloroplasts in fern protonemal cells. Plant Physiol 121:37–44

    Article  PubMed  CAS  Google Scholar 

  • Schindler M, Meiners S, Cheresh DA. 1989. RGD-dependent linkage between plant cell wall and plasma membrane: consequence for growth. J Cell Biol 108:1955–1965

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ, Knight M. 1994. Mechanical signalling, calcium and plant form. Plant Mol Biol 26:1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Wang BC, Zhou J, Wang YC. 2006. Physical stress and plant growth. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, 1st edition, J. A. Teixeira da Silva, editor, Global Science Books, London, United Kingdom

  • Wasteneys GO. 2004. Progress in understanding the role of microtubules in plant cells. Current Opin Plant Biol 7:651–660

    Article  CAS  Google Scholar 

  • Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ. 1996. Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    PubMed  CAS  Google Scholar 

  • Zhou J, Wang BC, Li Y, Wang YC. 2006. A system for studying the effect of mechanical stress on the elongation behavior of immobilized plant cells. Colloids Surfaces B Biointerfaces 49:165–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with financial support by a fund of National Natural Science Foundation of China (No. 30470431) and the 111 project (No. 1306023). The authors thank Prof. J. J. Chiu for helpful advice and discussion, and Mr. Y. Wang for his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Wang, B., Li, Y. et al. Responses of Chrysanthemum Cells to Mechanical Stimulation Require Intact Microtubules and Plasma Membrane–Cell Wall Adhesion. J Plant Growth Regul 26, 55–68 (2007). https://doi.org/10.1007/s00344-006-0029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-006-0029-2

Keywords

Navigation