Skip to main content
Log in

The Role of Sucrose in Regulation of Trunk Tissue Development in Betula pendula Roth

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Comparative ultrastructural analysis of the conducting and non-conducting phloem cells in the common straight-grained silver birch (Betula pendula var. pendula) and the Karelian birch (B. pendula var. carelica) with abnormal patterned wood was carried out, leading to the conclusion that there is an elevated sucrose content in the conducting phloem of the Karelian birch. A connection between sucrose levels and formation of abnormalities in the development of conducting tissues in the Karelian birch trunk was surmised. Experiments in which exogenous sucrose was applied to the silver birch trunk tissues have demonstrated the effects of different sucrose concentrations (0 g L−1, 10 g L−1, 25 g L−1, 50 g L−1, 100 g L−1) on the formation of xylem and phloem structural elements, and they yielded the types of tissue development that correspond to the abnormal tissue development in the Karelian birch trunk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Beslow DT, Rier JP. 1969. Sucrose concentration and xylem regeneration in Coleus internodes in vitro. Plant Cell Physiol 10:6977

    Google Scholar 

  • Borisjuk L, Rolletschek H, Wobus U, Weber H. 2003. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J Exp Bot 54:503–512

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Walenta S, Rolletschek H, Mueller-Klieser W, Wobus U, et al. 2002. Spatial analysis of plant metabolism: sucrose imaging within vicia faba cotyledons reveals specific developmental patterns. Plant J 29:521–530

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Walenta S, Weber H, Mueller-Klieser W, Wobus U. 1998. High resolution histographical mapping of glucose concentration in developing cotyledons of V. faba in relation to mitotic activity and starch accumulation: glucose as a possible developmental trigger. Plant J 15:583–591

    Article  CAS  Google Scholar 

  • Chafe SC, Durzan DJ. 1973. Tannin inclusions in cell suspension cultures of white spruce. Planta 113:251–262

    Article  CAS  Google Scholar 

  • Esau K. 1969. Plant Anatomy. Moscow, Russia, Mir Publishing House, 564 pp

    Google Scholar 

  • Evert RF. 1990. “Dicotyledons.” In: Behnke H-D, Sjolund RD (eds.), Sieve Elements. Comparative Structure, Induction and Development. Berlin, Heidelberg, Germany, Springer-Verlag, pp. 103–137

    Google Scholar 

  • Fadia VP, Mehta AR. 1973. Tissue culture studies on cucurbits: the effect of NAA, sucrose and kinetin on tracheal differentiation in Cucumis tissues cultured in vitro. Phytomorphology 23:212–215

    Google Scholar 

  • Folch BS, Lees M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gamalei Yu.V. 1990. Leaf Phloem: Structural and Functional Development Related to Evolution of the Flowering Plants. Saint Petersburg, Russia, Publishing House Nauka, 144 pp

    Google Scholar 

  • Gamalei YuV. 2004. Transport System of Vascular Plants. Saint Petersburg, Russia, Publishing House of Saint Petersburg State University, 424 pp

    Google Scholar 

  • Gibson SI. 2000. Plant sugar-response pathways. Part of a complex regulatiry web. Plant Physiol 124:1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Gibson SI. 2004. Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–164

    CAS  PubMed  Google Scholar 

  • Graham IA. 1996. Carbohydrate control of gene expression in higher plants. Res Microbiol 147:572–580

    Article  CAS  PubMed  Google Scholar 

  • Halford NG, Dickinson JR. 2001. “Sugar sensing and cell cycle control: evidence of crosstalk between two ancient signalling pathways. In: Francis D. (ed.), The Plant Cell Cycle and Its Interfaces. Sheffield, UK, Sheffield Academic Press, pp. 87–107

    Google Scholar 

  • Hauch S, Magel E. 1998. Extractable activities and protein content of sucrosephosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207:266–274

    Article  CAS  Google Scholar 

  • Hill GP. 1962. Exudation from aphid stilets during the period from dormancy to bud break in Tilia americana L. J Exp Bot 13:144–151

    Google Scholar 

  • Kholodova VP, Bolyakina YP, Buzulukova NP. 1980. “Storage tissues.” In: Danilova MPh, Kozubov GM (eds.), Atlas of Plant Tissue Ultrastructure. Petrozavodsk, Russia, Publishing House Karelia, pp. 347–384

    Google Scholar 

  • Koch KE. 1996. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  PubMed  Google Scholar 

  • Kolesnichenko VM. 1985. Dynamics of Assimilate Content and Transformation in Woody Plants. Candidate (PhD) Thesis, University of Voronezh, Russia, p 22

  • Korovin VV, Novitskaya LL, Kurnosov GA. 2003. Structural Abnormalities of the Stem in Woody Plants. Moscow, Russia, Publishing House of Moscow State Forest University, 280 pp

    Google Scholar 

  • Kursanov AL. 1976. Assimilate Transport in Plants. Moscow, Russia, Publishing House Nauka, 647 pp

    Google Scholar 

  • Kursanov AL, Pavlinova OA. 1967. Sugar accumulation as a function of growth processes in sugar beet roots. Russian J Plant Physiol 14:21–28

    CAS  Google Scholar 

  • Kursanov AL, Prasolova MF, Pavlinova OA. 1989. Pathways for sucrose enzymatic transformations in the sugar beet root in relation to its attracting function. Russian J Plant Physiol 36:629–641

    CAS  Google Scholar 

  • Larson PR. 1994. The Vascular Cambium. Development and Structure. Berlin, Germany, Springer-Verlag, 705 pp

    Google Scholar 

  • Meijer M, Murray JAH. 2000. The role and regulation of D-type cyclins in the plant cell cycle. Plant Mol Biol 43:621–633

    Article  CAS  PubMed  Google Scholar 

  • Newcomb LL, Diderich JA, Slattery MG, Heideman W. 2003. Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryotic Cell 2:143–149

    Article  CAS  PubMed  Google Scholar 

  • Novitskaya LL. 2000. Abnormal Morphogeny of Trunk Conductive Tissues of Woody Plants. PhD Dissertation, Botanical Institute of Russian Academy of Sciences, Saint-Petersburg, Russia

  • Peel AJ, Weatherley PE. 1959. Composition of sieve-tube sap. Nature 184:1955–1956

    CAS  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser G, Smeekens SCM. 2000. Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  CAS  PubMed  Google Scholar 

  • Perl A, Aviv D, Willmitzer L, Galun E. 1991. In vitro tuberization in transgenic potatoes harboring β-glucoronidase linked to a patatin promoter: effect of sucrose levels and photoperiods. Plant Sci 73:87–95

    Article  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH. 2000. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T. 1999. Source-sink regulation by sugars and stress. Current Opin Plant Biol 2:198–206

    CAS  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK. 2003. Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J. 2002. Sugar sensing and signalling in plants. Plant Cell 14:185–205

    Google Scholar 

  • Rook F, Bevan MW. 2003. Genetic approaches to understanding sugar-response pathway. J Exp Bot 54:495–501

    Article  CAS  PubMed  Google Scholar 

  • Sachs T. 1981. The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Google Scholar 

  • Sheen J, Zhou L, Jang JC. 1999. Sugars as signalling molecules. Current Opin Plant Biol 2:410–418

    CAS  Google Scholar 

  • Simko I. 1994. Sucrose application causes hormonal changes associated with potato tuber induction. J Plant Growth Regul 13:73–77

    CAS  Google Scholar 

  • Sinha AK, Hofmann MG, Römer U, Köckenberger W, EllingL, et al. 2002. Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol 128:1480–1489

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S. 1998. Sugar regulation of gene expression in plants. Current Opin Plant Biol 1:230–234

    CAS  Google Scholar 

  • Sofronova GI, Trubino GI, Shreders SM, Makarevskiy MF. 1978. “On a technique of carbohydrate quantification in vegetative organs of the Scots pine.” In: Physiological-biochemical Studies of Pine in the North. Karelian Branch of the USSR Academy of Science Publishers. Petrozavodsk, Russia, 119–133

  • Sudachkova NE. 1977. Metabolism of Coniferous and Wood Formation. Novosibirsk, Russia, Publishing House Nauka, 230 pp

    Google Scholar 

  • Sung SS, Kormanik PP, Black CC. 1993. Vascular cambial sucrose metabolism and growth in loblolly pine (Pinus taeda L.) in relation to transplanting stress. Tree Physiol 12:243–258

    CAS  PubMed  Google Scholar 

  • USSR State Pharmacopoeia. 1986. Tenth Edition. Moscow, Russia, Publishing House Medicina, 816 pp

    Google Scholar 

  • Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, et al. 2001. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13:385–398

    Article  CAS  PubMed  Google Scholar 

  • Wardrop AB, Cronshaw J. 1962. Formation of phenolic substances in the ray parenchyma of Angiosperms. Nature 193:90–92

    CAS  Google Scholar 

  • Warren Wilson J. 1984. “Control of tissue patterns in normal development and in regeneration.” In: Positional Controls in Plant Development. Cambridge, UK, Cambridge University Press, pp. 225–280

  • Warren Wilson J, Roberts LW, Gresshoff PM, Dircks SJ. 1982. Tracheary element differentiation induced in isolated cylinders of lettuce pith: a bipolar gradient technique. Ann Bot 50:605–614

    Google Scholar 

  • Weber H, Borisjuk L, Heim U, Sauer N, Wobus U. 1997a. A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9:895–908

    Article  CAS  Google Scholar 

  • Weber H, Borisjuk L, Wobus U. 1997b. Sugar import and metabolism during seed development. Trends Plant Sci 22:169–174

    Google Scholar 

  • Weber H, Heim U, Golombek S, Borisjuk L, Wobus U. 1998. Assimilate uptake and the regulation of seed development. Seed Sci Res 8:331–345

    CAS  Google Scholar 

  • Wetmore RH, De Maggio AE, Rier JP. 1964. Contemporary outlook on the differentiation of vascular tissues. Phytomorphology 14:203–217

    Google Scholar 

  • Wetmore RH, Rier JP. 1963. Experimental induction of vascular tissues in callus of angiosperms. Am J Bot 50:410–429

    Google Scholar 

  • Wetmore R, Sorokin S. 1955. On the differentiation of xylem. J Arnold Arboretum 36:305–317

    Google Scholar 

  • Wobus U, Weber H. 1999. Sugars as signal molecules in plant seed development. Biol Chem 380:937–944

    Article  CAS  PubMed  Google Scholar 

  • Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D. 1998. The role of gibberellin abscisic acid and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117:575–584

    Article  CAS  PubMed  Google Scholar 

  • Yu S-M. 1999. Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693

    Article  CAS  PubMed  Google Scholar 

  • Zaprometov MN. 1993. Phenolic Compounds: Distribution, Metabolism and Functions in Plants. Moscow, Russia, Publishing House Nauka, 272 pp

    Google Scholar 

  • Zimmermann MH. 1958. Translocation of organic substances in trees. III. The removal of sugars from the sieve tubes in the white ash (Fraxinus americana L.). Plant Physiol 33:213-217

    CAS  Google Scholar 

  • Zimmermann MH, Ziegler H. 1975. “List of sugars and sugar alcohols in sieve-tube exudates.” In: Zimmermann MH, Milburn JA (eds.), Transport in Plants. Encyclopedia of Plant Physiology. New series. I. Phloem Transport. Berlin, Germany, Springer-Verlag, pp. 480–503

    Google Scholar 

Download references

Acknowledgments

We thank the Russian Foundation for Basic Research for financial support (grants 02-04-49866 and 05-04-49932). We are grateful to L. L. Veselkova and G. K. Kanuchkova for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila L. Novitskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novitskaya, L.L., Kushnir, F.V. The Role of Sucrose in Regulation of Trunk Tissue Development in Betula pendula Roth. J Plant Growth Regul 25, 18–29 (2006). https://doi.org/10.1007/s00344-004-0419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-004-0419-2

Keywords

Navigation