Skip to main content
Log in

Structure–Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A number of novel brassinosteroid analogues were synthesized and subjected to the rice leaf lamina inclination bioassay. Modified B-ring analogues included lactam, thiolactone, cyclic ether, ketone, hydroxyl, and exocyclic methylene derivatives of brassinolide. Those derivatives containing polar functional groups retained considerable bioactivity, whereas the exocyclic methylene compounds were devoid of activity. Analogues containing normal alkyl and cycloalkyl substituents at C-24 (in place of the isopropyl group of brassinolide) showed an inverse relationship between activity and chain length or ring size, respectively. The corresponding cyclopropyl and cyclobutyl derivatives were significantly more active than brassinolide and appear to be the most potent brassinosteroids reported to date. When synergized with the auxin indole-3-acetic acid (IAA), their bioactivity can be further enhanced by 1–2 orders of magnitude. The cyclopropyl derivative, when coapplied with the auxin naphthaleneacetic acid, gave a significant increase in yield of wheat in a field trial. Certain 25- and 26-hydroxy derivatives are known metabolites of brassinosteroids. All of the C-25 stereoisomers of 25-hydroxy, 26-hydroxy, and 25,26-dihydroxy derivatives of brassinolide were prepared and shown to be much less active than brassinolide. This indicates that they are likely metabolic deactivation products of the parent phytohormone. A series of methyl ethers of brassinolide was synthesized to block deactivation by glucosylation of the free hydroxyl groups. The most significant finding was that the compound where three of the four hydroxyl groups (at C-3, C-22, and C-23) had been converted to methyl ethers retained substantial bioactivity. This type of modification could, in theory, allow brassinolide or 24-epibrassinolide to resist deactivation and thus offer greater persistence in field applications. A series of nonsteroidal mimetics of brassinolide was designed and synthesized. Two of the mimetics showed significant bioactivity and one had bioactivity comparable to brassinolide, but only when formulated and coapplied with IAA. They thus represent the first nonsteroidal analogues possessing brassinosteroid activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. G Adam V Marquardt (1986) ArticleTitleBrassinosteroids. Phytochemistry 25 1787–1799 Occurrence Handle10.1016/S0031-9422(00)81151-6 Occurrence Handle1:CAS:528:DyaL28XlsV2ltbk%3D

    Article  CAS  Google Scholar 

  2. Adam, G, Porzel, A, Schmidt, J, Schneider, B, Voigt, B (1996) “New developments in brassinosteroid research.” In: Atta-ur-Rahman (Ed.)., Studies in natural products chemistry, Vol. 18., Elsevier, Amsterdam, pp 495–549

  3. G Adam B Schneider (1999) Uptake, transport and metabolism. A Sakurai T Yokota SD Clouse (Eds) Brassinosteroids: steroidal plant hormones. Springer-Verlag Tokyo 113–136

    Google Scholar 

  4. M Anastasia P Allevi MG Brasca P Ciuffreda A Fiecchi (1984) ArticleTitleSynthesis of (2R,3S,22S,23S)-2,3,22,23-tetrahydroxy-B-homo-6-aza-5α-stigmastan-7-one, an aza-analogue of brassinolide. Gazz Chim Ital 114 159–161 Occurrence Handle1:CAS:528:DyaL2cXlvFahur0%3D

    CAS  Google Scholar 

  5. M Anastasia P Allevi P Ciuffreda A Fiecchi A Scala (1986) ArticleTitleSynthesis of (2R,3S,22S,23S)-2,3,22,23-tetrahydroxy-B-homo-7-aza-5α-stigmastan-6-one, an aza-analogue of homobrassinolide. J Chem Soc Perkin Trans 1 2117–2121

    Google Scholar 

  6. DL Andersen TG Back L Janzen K Michalak RP Pharis GCY Sung (2001) ArticleTitleDesign, synthesis and bioactivity of the first nonsteroidal mimetics of brassinolide. J Org Chem 66 7129–7141 Occurrence Handle10.1021/jo015832+ Occurrence Handle1:CAS:528:DC%2BD3MXmvVKit7g%3D Occurrence Handle11597241

    Article  CAS  PubMed  Google Scholar 

  7. TG Back (1995) Stereoselective synthesis of brassinosteroids. Atta-ur-Rahman (Ed.), Studies in natural products chemistry, Vol. 16. Elsevier Amsterdam 321–364

    Google Scholar 

  8. Back TG, Baron DL, Luo W, Nakajima SK, Janzen L, Pharis RP. 1997a. A concise synthesis of brassinolide and the preparation and bioactivity of some novel analogues. Proceedings of the 24th Annual Meeting of the Plant Growth Regulation Society of America. Atlanta, p 107–110.

  9. TG Back DL Baron W Luo SK Nakajima (1997b) ArticleTitleConcise improved procedure for the synthesis of brassinolide and some novel side-chain analogues. J Org Chem 62 1179–1182 Occurrence Handle1:CAS:528:DyaK2sXovVynsw%3D%3D

    CAS  Google Scholar 

  10. TG Back L Janzen SK Nakajima RP Pharis (1999) ArticleTitleSynthesis and biological activity of 25-methoxy, 25-fluoro and 25-azabrassinolide and 25-fluorocastasterone. Surprising effects of heteroatom substituents at C-25. J Org Chem 64 5494–5498 Occurrence Handle10.1021/jo990312o Occurrence Handle1:CAS:528:DyaK1MXjvFGiu7c%3D Occurrence Handle11674612

    Article  CAS  PubMed  Google Scholar 

  11. TG Back L Janzen SK Nakajima RP Pharis (2000a) ArticleTitleEffect of chain length and ring size of alkyl and cycloalkyl side chain substituents upon the biological activity of brassinosteroids. Preparation of novel analogues with activity exceeding that of brassinolide. J Org Chem 65 3047–3052 Occurrence Handle1:CAS:528:DC%2BD3cXisVKksLY%3D

    CAS  Google Scholar 

  12. TG Back SK Nakajima J Zhu (2000b) ArticleTitleSynthesis of 25-hydroxy, 26-hydroxy and 25,26-dihydroxybrassinolide. Synlett . 1649–1651

    Google Scholar 

  13. Back TG, Pharis RP, Nakajima SK. 2001. Brassinosteroid Analogs Useful as Plant Growth Regulators, U.S. Patent 6,239,073, issued May 29, 2001.

  14. TG Back L Janzen RP Pharis Z Yan (2002) ArticleTitleSynthesis and bioactivity of C-2 and C-3 methyl ether derivatives of brassinolide. Phytochemistry 59 627–634 Occurrence Handle10.1016/S0031-9422(02)00019-5 Occurrence Handle1:CAS:528:DC%2BD38XhsFagur8%3D Occurrence Handle11867094

    Article  CAS  PubMed  Google Scholar 

  15. DL Baron W Luo L Janzen RP Pharis TG Back (1998) ArticleTitleStructure–activity studies of brassinolide B-ring analogues. Phytochemistry 49 1849–1858 Occurrence Handle10.1016/S0031-9422(98)00367-7 Occurrence Handle1:CAS:528:DyaK1MXhvFGisg%3D%3D

    Article  CAS  Google Scholar 

  16. C Brosa (1996) ArticleTitleBrassinosteroids: a new way to define the structural requirements. Tetrahedron 52 2435–2448 Occurrence Handle10.1016/0040-4020(95)01065-3 Occurrence Handle1:CAS:528:DyaK28XhtVajtbo%3D

    Article  CAS  Google Scholar 

  17. C Brosa (1997) Biological effects of brassinosteroids. EJ Parish WD Nes (Eds) Biochemistry and function of sterols CRC Press Boca Raton, FL 201–220

    Google Scholar 

  18. C Brosa L Soca E Terricabras JC Ferrer A Alsina (1998) ArticleTitleNew synthetic brassinosteroids: a 5α-hydroxy-6-ketone analog with strong plant growth promoting activity. Tetrahedron 54 12337–12348 Occurrence Handle10.1016/S0040-4020(98)00743-1 Occurrence Handle1:CAS:528:DyaK1cXmtlSmu7s%3D

    Article  CAS  Google Scholar 

  19. C Brosa (1999) Structure–activity relationship. A Sakurai T Yokota SD Clouse (Eds) Brassinosteroids: steroidal plant hormones Springer-Verlag Tokyo 191–222

    Google Scholar 

  20. SD Clouse JM Sasse (1998) ArticleTitleBrassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49 427–451 Occurrence Handle1:CAS:528:DyaK1cXjvVShu7o%3D

    CAS  Google Scholar 

  21. HG Cutler T Yokota G Adam (Eds) (1991) Brassinosteroids: chemistry, bioactivity and applications. ACS Symp Ser 474. American Chemical Society Washington, DC

    Google Scholar 

  22. S Fujioka A Sakurai (1997) ArticleTitleBrassinosteroids. Natural Prod Rep 14 1–10 Occurrence Handle1:CAS:528:DyaK2sXhvVyjsbY%3D

    CAS  Google Scholar 

  23. S Fujioka T Noguchi S Takatsuto S Yoshida (1998) ArticleTitleActivity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry 49 1841–1848 Occurrence Handle10.1016/S0031-9422(98)00412-9 Occurrence Handle1:CAS:528:DyaK1MXhvFGjuw%3D%3D

    Article  CAS  Google Scholar 

  24. MD Grove GF Spencer WK Rohwedder N Mandava JF Worley JD Warthen Jr GL Steffens JL Flippen–Anderson JC Cook Jr (1979) ArticleTitleBrassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281 216–217 Occurrence Handle1:CAS:528:DyaL3cXht1CrtLY%3D

    CAS  Google Scholar 

  25. T Hai B Schneider G Adam (1995) ArticleTitleMetabolic conversion of 24-epi-brassinolide into pentahydroxylated brassinosteroid glucosides in tomato cell cultures. Phytochemistry 40 443–448 Occurrence Handle10.1016/0031-9422(95)00224-U Occurrence Handle1:CAS:528:DyaK2MXot1Gitro%3D

    Article  CAS  Google Scholar 

  26. Y Kamuro S Takatsuto (1999) Practical application of brassinosteroids in agricultural fields. A Sakurai T Yokota SD Clouse (Eds) Brassinosteroids: steroidal plant hormones Springer-Verlag Tokyo 223–241

    Google Scholar 

  27. VA Khripach VN Zhabinskii AE de Groot (1999) Brassinosteroids: a new class of plant hormones. Academic Press San Diego, CA

    Google Scholar 

  28. T Kishi K Wada S Marumo K Mori (1986) ArticleTitleSynthesis of brassinolide analogs with a modified ring B and their plant growth-promoting activity. Agric Biol Chem 50 1821–1830 Occurrence Handle1:CAS:528:DyaL28XmtVClt70%3D

    CAS  Google Scholar 

  29. L Kohout M Strnad (1989) ArticleTitleBrassinolide analogues without side chain. Collect Czech Chem Commun 54 1019–1027 Occurrence Handle1:CAS:528:DyaK3cXnslym

    CAS  Google Scholar 

  30. L Kohout M Strnad M Kaminek (1991) Types of brassinosteroids and their bioassays. HG Cutler T Yokota G Adam (Eds) Brassinosteroids: chemistry, bioactivity and applications. ACS Sym Ser 474. American Chemical Society Washington, DC 56–73

    Google Scholar 

  31. W Luo L Janzen RP Pharis TG Back (1998) ArticleTitleBioactivity of brassinolide methyl ethers. Phytochemistry 49 637–642 Occurrence Handle10.1016/S0031-9422(97)00881-9 Occurrence Handle1:CAS:528:DyaK1cXmsF2qtLg%3D

    Article  CAS  Google Scholar 

  32. NB Mandava (1988) ArticleTitlePlant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39 23–52 Occurrence Handle10.1146/annurev.pp.39.060188.000323 Occurrence Handle1:CAS:528:DyaL1cXlsVKhtrY%3D

    Article  CAS  Google Scholar 

  33. TC McMorris (1999) Chemical synthesis of brassinosteroids. A Sakurai T Yokota SD Clouse (Eds) Brassinosteroids: steroidal plant hormones. Springer-Verlag Tokyo 69–90

    Google Scholar 

  34. K Mori T Takeuchi (1988) ArticleTitleSynthesis of 25-methyldolichosterone, 25-methyl-2,3-diepidolichosterone, 25-methylcastasterone and 25-methylbrassinolide. Liebigs Ann Chem . 815–818

    Google Scholar 

  35. K Okada K Mori (1983) ArticleTitleSynthesis of brassinolide analogs and their plant growth-promoting activity. Agric Biol Chem 47 89–95 Occurrence Handle1:CAS:528:DyaL3sXitFaqsbg%3D

    CAS  Google Scholar 

  36. RP Pharis L Janzen SK Nakajima J Zhu TG Back (2001) ArticleTitleBioactivity of of 25-hydroxy, 26-hydroxy, 25,26-dihydroxy- and 25,26-epoxybrassinolide. Phytochemistry 58 1043–1047 Occurrence Handle10.1016/S0031-9422(01)00381-8 Occurrence Handle1:CAS:528:DC%2BD3MXos1Wrsbw%3D Occurrence Handle11730867

    Article  CAS  PubMed  Google Scholar 

  37. JA Ramírez EG Gros LR Galagovsky (2000) ArticleTitleEffects on bioactivity due to C-5 heteroatom substituents on synthetic 28-homobrassinosteroid analogs. Tetrahedron 56 6171–6180 Occurrence Handle1:CAS:528:DC%2BD3cXlvVKksrg%3D

    CAS  Google Scholar 

  38. A Sakurai T Yokota SD Clouse (Eds) (1999) Brassinosteroids: steroidal plant hormones. Springer-Verlag Tokyo

    Google Scholar 

  39. JM Sasse (1991) The case for brassinosteroids as endogenous plant hormones. HG Cutler T Yokota G Adam (Eds) Brassinosteroids: chemistry, bioactivity and applications. ACS Symp Ser 474. American Chemical Society Washington, DC 158–166

    Google Scholar 

  40. B Schneider A Kolbe A Porzel G Adam (1994) ArticleTitleA metabolite of 24-epibrassinolide in cell suspension cultures of Lycopersicon esculentum. Phytochemistry 36 319–321 Occurrence Handle10.1016/S0031-9422(00)97068-7 Occurrence Handle1:CAS:528:DyaK2cXksFCjsL8%3D

    Article  CAS  Google Scholar 

  41. H Seto S Fujioka H Koshino T Suenaga S Yoshida T Watanabe S Takatsuto (1998) ArticleTitleEpimerization at C-5 of brassinolide with sodium methoxide and the biological activity of 5-epibrassinolide in the rice leaf lamina inclination test. J Chem Soc Perkin Trans 1 3355–3358 Occurrence Handle10.1039/a805945d

    Article  Google Scholar 

  42. H Seto S Fujioka H Koshino H Hayasaka T Shimizu S Yoshida T Watanabe (1999a) ArticleTitleSynthesis and biological activity of 6a-carbabrassinolide: B-ring homologation of 6-oxo-steroid to 6-oxo-7a-homosteroid with trimethylsilyldiazomethane-boron trifluoride etherate. Tetrahedron Lett 40 2359–2362 Occurrence Handle1:CAS:528:DyaK1MXhvVemt7c%3D

    CAS  Google Scholar 

  43. H Seto S Fujioka H Koshino T Suenaga S Yoshida T Watanabe S Takatsuto (1999b) ArticleTitle2,3,5-Tri-epi-brassinolide: preparation and biological activity in rice leaf lamina inclination test. Phytochemistry 52 815–818 Occurrence Handle1:CAS:528:DC%2BD3cXhtFequg%3D%3D

    CAS  Google Scholar 

  44. H Seto S Fujioka H Koshino S Yoshida M Tsubuki T Honda (1999c) ArticleTitleSynthesis and biological evaluation of extra-hydroxylated brassinolide analogs. Tetrahedron 55 8341–8352 Occurrence Handle1:CAS:528:DyaK1MXksVSgurc%3D

    CAS  Google Scholar 

  45. H Seto S Hiranuma S Fujioka H Koshino T Suenaga S Yoshida (2002) ArticleTitlePreparation, conformational analysis, and biological evaluation of 6a-carbabrassinolide and related compounds. Tetrahedron 58 9741–9749 Occurrence Handle10.1016/S0040-4020(02)01247-4 Occurrence Handle1:CAS:528:DC%2BD38XovVSmur0%3D

    Article  CAS  Google Scholar 

  46. GCY Sung L Janzen RP Pharis TG Back (2000) ArticleTitleSynthesis and bioactivity of 6α- and 6β-hydroxy analogues of castasterone. Phytochemistry 55 121–126 Occurrence Handle10.1016/S0031-9422(00)00259-4 Occurrence Handle1:CAS:528:DC%2BD3cXntF2js74%3D Occurrence Handle11065287

    Article  CAS  PubMed  Google Scholar 

  47. S Takatsuto N Yazawa N Ikekawa T Takematsu Y Takeuchi M Koguchi (1983) ArticleTitleStructure–activity relationship of brassinosteroids. Phytochemistry 22 2437–2441 Occurrence Handle10.1016/0031-9422(83)80135-6 Occurrence Handle1:CAS:528:DyaL2cXhsFeqsrw%3D

    Article  CAS  Google Scholar 

  48. S Takatsuto N Ikekawa T Morishita H Abe (1987) ArticleTitleStructure–activity relationship of brassinosteroids with respect to the A/B ring functional groups. Chem Pharm Bull 35 211–216 Occurrence Handle1:CAS:528:DyaL2sXktVClsL4%3D

    CAS  Google Scholar 

  49. S Takatsuto T Yokota (1999) Biochemical analysis of natural brassinosteroids. A Sakurai T Yokota SD Clouse (Eds) Brassinosteroids: steroidal plant hormones Springer-Verlag Tokyo 47–68

    Google Scholar 

  50. K Takeno RP Pharis (1982) ArticleTitleBrassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Plant Cell Physiology 23 1275–1281 Occurrence Handle1:CAS:528:DyaL3sXivVal

    CAS  Google Scholar 

  51. MJ Thompson WJ Meudt NB Mandava SR Dutky WR Lusby DW Spaulding (1982) ArticleTitleSynthesis of brassinosteroids and relationship of structure to plant growth-promoting effects. Steroids 39 89–l05 Occurrence Handle10.1016/0039-128X(82)90129-5 Occurrence Handle1:CAS:528:DyaL38XlvFynt78%3D Occurrence Handle7080117

    Article  CAS  PubMed  Google Scholar 

  52. B Voigt A Porzel D Golsch W Adam G Adam (1996) ArticleTitleRegioselective oxyfunctionalization of brassinosteroids by methyl(trifluoromethyl)dioxirane: synthesis of 25-hydroxybrassinolide and 25-hydroxy-24-epibrassinolide by direct C-H insertion. Tetrahedron 52 10653–10658 Occurrence Handle10.1016/0040-4020(96)00587-X Occurrence Handle1:CAS:528:DyaK28XkvV2ksrc%3D

    Article  CAS  Google Scholar 

  53. K Wada S Marumo (1981) ArticleTitleSynthesis and plant growth-promoting activity of brassinolide analogues. Agric Biol Chem 45 2579–2585 Occurrence Handle1:CAS:528:DyaL38XotFWrug%3D%3D

    CAS  Google Scholar 

  54. T Yokota K Mori (1992) Molecular structure and biological activity of brassinolide and related brassinosteroids. M Bohl WL Duax (Eds) Molecular structure and biological activity of steroids CRC Press Boca Raton, FL 317–340

    Google Scholar 

  55. T Yokota Y Ogino H Suzuki N Takahashi H Saimoto S Fujioka A Sakurai (1991) Metabolism and biosynthesis of brassinosteroids. HG Cutler T Yokota G Adam (Eds) Brassinosteroids: chemistry, bioactivity and applications. ACS Symp Ser 474. American Chemical Society Washington, DC 86–96

    Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (Research, Strategic, and CRD grants), the Environmental Science and Technology Alliance of Canada, Agritope Inc. (now Exelixis Plant Sciences Inc.), and CIDtech Research Inc. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Back.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Back, T.G., Pharis, R.P. Structure–Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity . J Plant Growth Regul 22, 350–361 (2003). https://doi.org/10.1007/s00344-003-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-003-0057-0

Keywords

Navigation