Skip to main content
Log in

Increased Endogenous Auxin Production in Arabidopsis thaliana Causes Both Earlier Described and Novel Auxin-Related Phenotypes

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Transgenic Arabidopsis thaliana plants harboring the Agrobacterium tumefaciens phytohormone-biosynthetic genes iaaM and iaaH display an altered development indicative of elevated auxin levels. These plants exhibit an increased apical dominance, increased hypocotyl and petiole length and epinastic leaves and cotyledons. In addition, the transgenic plants display the formation of necrotic spots on leaves and bracts in soil and an altered behavior of axillary buds in tissue culture. Despite transcriptional activity of the iaaM and iaaH promoters in the vasculature of root tissue, root development of young iaaM/iaaH transgenic plants is identical to wild type. However, transgenic iaaM/iaaH plants grown under tissue culture conditions for a prolonged period display both vigorous and ectopic root growth. The level of free IAA in the rosette of the iaaM/iaaH transgenic plants is increased approximately 2-fold compared to wild type. The number of cells comprising the vascular tissue in hypocotyls and inflorescence stems of the transgenic plants is reduced and these plants exhibit a reduced basipetal polar auxin transport in the inflorescence stems. This reduced polar auxin transport probably accounts for the rapid auxin effect on the aerial part of the transgenic plants and the late effect on root development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. R Aloni (2001) ArticleTitleFoliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Regul 20 22–34 Occurrence Handle1:CAS:528:DC%2BD3MXlt1Kqtrw%3D

    CAS  Google Scholar 

  2. O Avsian-Kretchmer J-C Cheng L Chen E Moctezuma ZR Sung (2002) ArticleTitleIndole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130 199–209 Occurrence Handle10.1104/pp.003228 Occurrence Handle1:CAS:528:DC%2BD38XntFOrtr4%3D Occurrence Handle12226500

    Article  CAS  PubMed  Google Scholar 

  3. S Bak FE Tax KA Feldmann DW Galbraith R Feyereisen (2001) ArticleTitleCYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13 101–111 Occurrence Handle1:CAS:528:DC%2BD3MXjslCrtrg%3D Occurrence Handle11158532

    CAS  PubMed  Google Scholar 

  4. I Barlier M Kowalczyk A Marchant K Ljung R Bhalerao M Bennet G Sandberg C Bellini (2000) ArticleTitleThe SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97 14819–14824 Occurrence Handle10.1073/pnas.260502697 Occurrence Handle1:CAS:528:DC%2BD3MXitVGmsw%3D%3D Occurrence Handle11114200

    Article  CAS  PubMed  Google Scholar 

  5. B Bartel S LeClere M Magidin BK Zolman (2001) ArticleTitleInputs to the active indole-3-acetic acidpool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J Plant Growth Regul 20 198–216 Occurrence Handle10.1007/s003440010025 Occurrence Handle1:CAS:528:DC%2BD38XjtVCnsA%3D%3D

    Article  CAS  Google Scholar 

  6. M Bevan (1984) ArticleTitleBinary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12 8711–8721 Occurrence Handle6095209

    PubMed  Google Scholar 

  7. RP Bhalerao J Eklof K Ljung A Marchant M Bennett G Sandberg (2002) ArticleTitleShoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29 325–332 Occurrence Handle10.1046/j.0960-7412.2001.01217.x Occurrence Handle1:CAS:528:DC%2BD38XhvFOitL8%3D Occurrence Handle11844109

    Article  CAS  PubMed  Google Scholar 

  8. W Boerjan M Cervera M Delarue T Beeckman W DeWitte C Bellini M Caboche H Van Onckelen M Van Montagu D Inze (1995) ArticleTitle superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7 1405–1419 Occurrence Handle1:CAS:528:DyaK2MXot1Ogurs%3D Occurrence Handle8589625

    CAS  PubMed  Google Scholar 

  9. I Casimiro A Marchant RP Bhalerao T Beeckman S Dhooge R Swarup N Graham D Inze G Sandberg PJ Casero M Bennet (2001) ArticleTitleAuxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13 843–852

    Google Scholar 

  10. SP Chatfield P Stirnberg BG Forde O Leyser (2000) ArticleTitleThe hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24 159–169 Occurrence Handle10.1046/j.1365-313X.2000.00862.x Occurrence Handle1:CAS:528:DC%2BD3cXosFSrt70%3D Occurrence Handle11069691

    Article  CAS  PubMed  Google Scholar 

  11. J-G Chen (2001) ArticleTitleDual auxin signalling pathways control cell elongation and division. J Plant Growth Regul 20 255–264 Occurrence Handle1:CAS:528:DC%2BD38XjtVCntA%3D%3D

    CAS  Google Scholar 

  12. S Costa L Dolan (2000) ArticleTitleDevelopment of the root pole and cell patterning in Arabidopsis roots. Curr Opin Gen Dev 10 405–409 Occurrence Handle10.1016/S0959-437X(00)00104-0 Occurrence Handle1:CAS:528:DC%2BD3cXlt1Sjtbc%3D

    Article  CAS  Google Scholar 

  13. M Delarue P Muller C Bellini A Delbarre (1999) ArticleTitleIncreased auxin efflux in the IAA-overproducing sur1 mutant of Arabidopsis thaliana: a mechanism of reducing auxin levels?. Physiol Plant 107 120–127 Occurrence Handle10.1034/j.1399-3054.1999.100116.x Occurrence Handle1:CAS:528:DyaK1MXnsVGmtr0%3D

    Article  CAS  Google Scholar 

  14. RA Dietrich TP Delanet SJ Uknes ER Ward JA Ryals JL Dangl (1994) ArticleTitle Arabidopsis mutants simulating disease-resistance response. Cell 77 565–577 Occurrence Handle1:CAS:528:DyaK2cXksFCju7g%3D Occurrence Handle8187176

    CAS  PubMed  Google Scholar 

  15. S Eklof C Astot F Sitbon T Moritz O Olsson G Sandberg (2000) ArticleTitleTransgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant J 23 279–284 Occurrence Handle10.1046/j.1365-313x.2000.00762.x Occurrence Handle1:CAS:528:DC%2BD3cXmtFOnsLg%3D Occurrence Handle10929121

    Article  CAS  PubMed  Google Scholar 

  16. M Frank H-M Rupp E Prinsen V Motyka H Van Onckelen T Schmulling (2000) ArticleTitleHormone autotrophic growth and differentiation identifies mutant lines of Arabidopsis with altered cytokinin and auxin content or signalling. Plant Physiol 122 721–729 Occurrence Handle10.1104/pp.122.3.721 Occurrence Handle1:CAS:528:DC%2BD3cXktFSqsbg%3D Occurrence Handle10712535

    Article  CAS  PubMed  Google Scholar 

  17. V Gaudin T Vrain L Jouanin (1994) ArticleTitleBacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32 11–29 Occurrence Handle1:CAS:528:DyaK2MXhsVKqtg%3D%3D

    CAS  Google Scholar 

  18. V Grbic AB Bleecker (1996) ArticleTitleAn altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes. Development 122 2395–2403 Occurrence Handle1:CAS:528:DyaK28XltFWnt7s%3D Occurrence Handle8756285

    CAS  PubMed  Google Scholar 

  19. JT Greenberg (1996) ArticleTitleProgrammed cell death: a way of life for plants. Proc Natl Acad Sci USA 93 12094–12097 Occurrence Handle1:CAS:528:DyaK28Xms1Cqu7w%3D Occurrence Handle8901538

    CAS  PubMed  Google Scholar 

  20. JD Hamill (1993) ArticleTitleAlterations in auxin and cytokinin metabolism of higher plants due to expression of specific genes from pathogenic bacteria: a review. Austr J Plant Physiol 20 405–423 Occurrence Handle1:CAS:528:DyaK2cXhsFyktrs%3D

    CAS  Google Scholar 

  21. PJ Jensen RP Hangarter M Estelle (1998) ArticleTitleAuxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116 455–462 Occurrence Handle1:CAS:528:DyaK1cXht1ajur4%3D Occurrence Handle9489005

    CAS  PubMed  Google Scholar 

  22. J King DP Stimart RH Fisher AB Bleecker (1996) ArticleTitleA mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7 2023–2037 Occurrence Handle10.1105/tpc.7.12.2023

    Article  Google Scholar 

  23. HJ Klee RB Horsch MA Hinchee MB Hein NL Hoffmann (1987) ArticleTitleThe effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1 86–96 Occurrence Handle1:CAS:528:DyaL2sXitVyku78%3D

    CAS  Google Scholar 

  24. K Ljung RP Bhalerao G Sandberg (2001) ArticleTitleSites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28 465–474

    Google Scholar 

  25. K Ljung AK Hull M Kowalczyk A Marchant J Celenza JD Cohen G Sandberg (2002) ArticleTitleBiosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50 309–332 Occurrence Handle10.1023/A:1016024017872 Occurrence Handle12175022

    Article  PubMed  Google Scholar 

  26. M Mizutani E Ward D Ohta (1998) ArticleTitleCytochrome P450 superfamily in Arabidopsis thaliana: isolation of cDNAs, differential expression and RFLP mapping of multiple cytochromes P450. Plant Mol Biol 37 39–52 Occurrence Handle10.1023/A:1005921406884 Occurrence Handle1:CAS:528:DyaK1cXjtlajt7k%3D Occurrence Handle9620263

    Article  CAS  PubMed  Google Scholar 

  27. T Murashige F Skoog (1962) ArticleTitleA revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15 473–497 Occurrence Handle1:CAS:528:DyaF3sXksFKm

    CAS  Google Scholar 

  28. M Oka K Miyamoto K Okada J Ueda (1999) ArticleTitleAuxin polar transport and flower formation in Arabidopsis thaliana transformed with INDOLACETAMIDE HYDROLASE (iaaH) gene. Plant Cell Physiol 40 231–237 Occurrence Handle1:CAS:528:DyaK1MXht12ktr0%3D Occurrence Handle10202817

    CAS  PubMed  Google Scholar 

  29. K Okada J Ueda MK Komaki CJ Bell Y Shimura (1991) ArticleTitleRequirement of the auxin polar transport system in early stages of Arabidopsis floral bud transformation. Plant Cell 3 677–684 Occurrence Handle1:CAS:528:DyaK3MXlsl2ntr0%3D

    CAS  Google Scholar 

  30. K Palme L Galweiler (1999) ArticleTitlePIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2 375–381 Occurrence Handle1:CAS:528:DyaK1MXmvFSis7w%3D Occurrence Handle10508762

    CAS  PubMed  Google Scholar 

  31. D Reinhardt T Mandel C Kuhlemeier (2000) ArticleTitleAuxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12 507–518 Occurrence Handle1:CAS:528:DC%2BD3cXktFWisrw%3D Occurrence Handle10760240

    CAS  PubMed  Google Scholar 

  32. B Reintanz M Lehnen M Reichelt J Gershenzon M Kowalczyk G Sandberg M Godde R Uhl K Palme (2001) ArticleTitle bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13 351–367

    Google Scholar 

  33. CP Romano ML Cooper HJ Klee (1993) ArticleTitleUncoupling auxin and ethylene effects in transgenic tobacco and Arabidopsis plants. Plant Cell 5 181–189

    Google Scholar 

  34. J Sanchez-Bravo A Ortuno J Botia M Acosta F Sabater (1991) ArticleTitleLateral diffusion of polarly transported indol-acetic acid and its role in the growth of Lupinus albus L. hypocotyls. Planta 185 391–396 Occurrence Handle1:CAS:528:DyaK3MXmsFahs7s%3D

    CAS  Google Scholar 

  35. F Sitbon B Sunberg O Olsson G Sandberg (1991) ArticleTitleFree and conjugated indolacetic acid (IAA) 9 contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefaciens. Plant Physiol 95 480–485 Occurrence Handle1:CAS:528:DyaK3MXhtl2rt7o%3D

    CAS  Google Scholar 

  36. F Sitbon S Hennion B Sunberg CHA Little O Olson G Sandberg (1992a) ArticleTitleTransgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99 1062–1069 Occurrence Handle1:CAS:528:DyaK38Xls1Oku7s%3D

    CAS  Google Scholar 

  37. F Sitbon CHA Little O Olsson G Sandberg (1992b) ArticleTitleCorrelation between the expression of T-DNA IAA biosynthetic genes from developmentally regulated promoters and the distribution of IAA in different organs of transgenic tobacco. Physiol Plant 85 679–688 Occurrence Handle1:CAS:528:DyaK38XmtlShsbg%3D

    CAS  Google Scholar 

  38. F Sitbon A Ostin B Sunberg O Olsson G Sandberg (1993) ArticleTitleConjugation of indole-3-acetic acid (IAA) in wild type and IAA-overproducing transgenic tobacco plants, and identification of the main conjugates by frit-fast bombardment liquid chromatrography-mass spectrometry. Plant Physiol 101 313–320 Occurrence Handle1:CAS:528:DyaK3sXpvVWmtw%3D%3D Occurrence Handle12231687

    CAS  PubMed  Google Scholar 

  39. G Smolen J Bender (2002) ArticleTitle Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160 323–332 Occurrence Handle1:CAS:528:DC%2BD38XhsFKqtr4%3D Occurrence Handle11805067

    CAS  PubMed  Google Scholar 

  40. R Swarup A Marchant MJ Bennett (2000) ArticleTitleAuxin transport: providing a sense of direction during plant development. Biochem Soc Trans 28 481–485

    Google Scholar 

  41. T Tantikanjana JWH Yong DS Letham M Griffith M Hussain K Ljung G Sandberg V Sundaresan (2001) ArticleTitleControl of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev 15 1577–1588 Occurrence Handle1:CAS:528:DC%2BD3MXksFKgurs%3D Occurrence Handle11410537

    CAS  PubMed  Google Scholar 

  42. E van der Graaff PJJ Hooykaas (1996) ArticleTitleImprovements in the transformation of Arabidopsis thaliana C24 leaf-discs by Agrobacterium tumefaciens. Plant Cell Rep 15 572–577 Occurrence Handle10.1007/s002990050076 Occurrence Handle1:CAS:528:DyaK28XlsFOmurw%3D

    Article  CAS  Google Scholar 

  43. E van der Graaff (1997) Developmental mutants of Arabidopsis thaliana obtained after T-DNA transformation. Leiden University 1–179

    Google Scholar 

  44. E van der Graaff A den Dulk-Ras PJJ Hooykaas B Keller (2000) ArticleTitleActivation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127 4971–4980 Occurrence Handle11044410

    PubMed  Google Scholar 

  45. E van der Graaff CA Auer PJJ Hooykaas (2001) ArticleTitleAltered development of Arabidopsis thaliana carrying the Agrobacterium tumefaciens ipt gene is partially due to ethylene effects. Plant Growth Regulation 34 305–315 Occurrence Handle10.1023/A:1013351502643 Occurrence Handle1:CAS:528:DC%2BD38XlsFen

    Article  CAS  Google Scholar 

  46. D Weijers (2002) ArticleTitleHormonal regulation of pattern formation in the Arabidopsis embryo: molecular genetic studies on the role of auxin and cytokinin. Leiden University 1–146

    Google Scholar 

  47. K Weymann M Hunt S Uknes U Neuenschwander K Lawton H Steiner J Ryals (1996) ArticleTitleSuppression and restoration of lesion formation in Arabidopsis lsd mutants. Plant Cell 7 2013–2022 Occurrence Handle10.1105/tpc.7.12.2013

    Article  Google Scholar 

  48. Y Zhao SK Christensen C Fankhauser JR Cashman JD Cohen D Weigel J Chory (2001) ArticleTitleA role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291 306–309 Occurrence Handle10.1126/science.291.5502.306 Occurrence Handle1:CAS:528:DC%2BD3MXktlKmsw%3D%3D Occurrence Handle11209081

    Article  CAS  PubMed  Google Scholar 

  49. Y Zhao AK Hull NR Gupta KA Goss J Alonso JR Ecker J Normanly J Chory JL Celenza (2002) ArticleTitleTrp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16 3100–3112 Occurrence Handle10.1101/gad.1035402 Occurrence Handle1:CAS:528:DC%2BD38XpsVamtbo%3D Occurrence Handle12464638

    Article  CAS  PubMed  Google Scholar 

  50. R Zhong Z Ye (2001) ArticleTitleAlteration of auxin polar transport in the Arabidopsis ifl1 mutants. Plant Physiol 126 549–563 Occurrence Handle1:CAS:528:DC%2BD3MXks1Gnu7k%3D Occurrence Handle11402186

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gerda Lamers for assistance with the anatomical analysis, Willem Hoekert and Tomasz Baginski for assistance with the generation and analysis of the transgenic lines and Dr. Remko Offringa and Dr. Bert van der Zaal for critical reading of the manuscript. This work was sponsored through the EU INCO program ERBIC 15CT9609/4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric van der Graaff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Graaff, E., Boot, K., Granbom, R. et al. Increased Endogenous Auxin Production in Arabidopsis thaliana Causes Both Earlier Described and Novel Auxin-Related Phenotypes . J Plant Growth Regul 22, 240–252 (2003). https://doi.org/10.1007/s00344-003-0014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-003-0014-y

Keywords

Navigation