Skip to main content
Log in

Eukaryotic food sources analysis in situ of tropical common sea cucumber Holothuria leucospilota based on 18S rRNA gene high-throughput sequencing

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Sea cucumber Holothuria leucospilota is one of the most widespread tropical holothurian species. In this study, eukaryotic organism composition in foregut and hindgut contents of H. leucospilota and surrounding sediments was assessed by 18S rRNA gene high-throughput sequencing. Eukaryon richness and diversity in the habitat sediments were significantly higher than those in foregut and hindgut contents of the sea cucumbers (P<0.05). The foregut content group, hindgut content group, and marine sediment group sequences were respectively assigned to 18.20±1.32, 19.40±1.03, and 21.80±0.37 phyla. In the foregut contents, Nematoda (20.18%±9.59%), Mollusca (16.12%±10.49%), Chlorophyta (10.04%± 4.85%), Annelida (8.72%±10.93%), Streptophyta (8.46%±4.65%), and Diatomea (5.99%±2.01%) were the predominant phyla, which showed the eukaryotic food sources of H. leucospilota were primarily belong to the above phyla. The predominant phyla in the hindgut contents were Streptophyta (45.55%±17.32%), Mollusca (4.93%±4.82%), Arthropoda (5.37%±3.08%), Diatomea (3.88%±2.34%), and Chlorophyta (3.79%±1.59%); and Annelida (37.80%±17.00%), Arthropoda (24.49%±12.53%), Platyhelminthes (7.14%±3.02%), Nematoda (4.14%±0.91%), and Diatomea (5.11%±1.35%) had large contents in the sediments. The comparatively high content of Paris genus in phylum Streptophyta in foregut contents indicated that land plants were one of the primary food sources of H. leucospilota, however the significantly higher contents of Streptophyta in hindgut contents than that in foregut contents might suggest a large part of the terrigenous detritus ingested might not be digested by H. leucospilota. UPGMA and PCoA analysis revealed that eukaryotic organism composition differed significantly between foregut contents of H. leucospilota and ambient sediments, indicating selective feeding feature of H. leucospilota. This study provided useful references for artificial feed of tropical sea cucumbers and enhanced understanding of the ecological roles of detritus-feeding macrobenthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Albaina A, Aguirre M, Abad D et al. 2016. 18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species. Ecology and Evolution, 6(6): 1809–1824, https://doi.org/10.1002/ece3.1986.

    Google Scholar 

  • Bachy C, Dolan J R, López-García P et al. 2013. Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. The ISME Journal, 7(2): 244–255, https://doi.org/10.1038/ismej.2012.106.

    Google Scholar 

  • Backeljau T, De Bruyn L, De Wolf H et al. 1996. Multiple UPGMA and neighbor-joining trees and the performance of some computer packages. Molecular Biology and Evolution, 13(2): 309, https://doi.org/10.1093/oxfordjournals.molbev.a025590.

    Google Scholar 

  • Bade L M, Balakrishnan C N, Pilgrim E M et al. 2014. A genetic technique to identify the diet of cownose rays, Rhinoptera bonasus: analysis of shellfish prey items from North Carolina and Virginia. Environmental Biology of Fishes, 97(9): 999–1012, https://doi.org/10.1007/s10641-014-0290-3.

    Google Scholar 

  • Bao W K, Wang L. 2004. Habitat condition and population characteristics of Paris dunniana Lévl. in Jianfengling, Hainan province. Journal of Plant Resources and Environment, 13(1): 32–36. (in Chinese with English abstract)

    Google Scholar 

  • Barcyté D, Pilátová J, Mojzeš P et al. 2020. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate. Journal of Phycology, 56(1): 217–232, https://doi.org/10.1111/jpy.12931.

    Google Scholar 

  • Beier S, Bolley M, Traunspurger W. 2004. Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshwater Biology, 49(1): 77–86, https://doi.org/10.1046/j.1365-2426.2003.01168.x.

    Google Scholar 

  • Berry O, Bulman C, Bunce M et al. 2015. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Marine Ecology Progress Series, 540: 167–181, https://doi.org/10.3354/meps11524.

    Google Scholar 

  • Bonham K, Held E E. 1963. Ecological observations on the sea cucumbers Holothuria atra and H. leucospilota at Rongelap Atoll, Marshall Islands. Pacific Science, 17(3): 305–314.

    Google Scholar 

  • Brown D S, Burger R, Cole N et al. 2014. Dietary competition between the alien Asian musk shrew (Suncus murinus) and a re-introduced population of Telfair’s skink (Leiolopisma telfairii). Molecular Ecology, 23(15): 3695–3705, https://doi.org/10.1111/mec.12445.

    Google Scholar 

  • Buckland A, Baker R, Loneragan N et al. 2017. Standardising fish stomach content analysis: the importance of prey condition. Fisheries Research, 196: 126–140, https://doi.org/10.1016/j.fishres.2017.08.003.

    Google Scholar 

  • Carreon-Martinez L, Heath D D. 2010. Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis. Molecular Ecology, 19(1): 25–27, https://doi.org/10.1111/j.1365-294X.2009.04412.x.

    Google Scholar 

  • Carreon-Martinez L, Johnson T B, Ludsin S A et al. 2011. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. Journal of Fish Biology, 78(4): 1170–1182, https://doi.org/10.1111/j.1095-8649.2011.02925.x.

    Google Scholar 

  • Conand C. 1997. Are holothurian fisheries for export sustainable? In: Proceedings of the 8th International Coral Reef Symposium. Smithsonian Tropical Research Institute, Panamá. p.2021–2026.

    Google Scholar 

  • Dance S K, Lane I, Bell J D. 2003. Variation in short-term survival of cultured sandfish (Holothuria scabra) released in mangrove-seagrass and coral reef flat habitats in Solomon Islands. Aquaculture, 220(1–4): 495–505, https://doi.org/10.1016/S0044-8486(02)00623-3.

    Google Scholar 

  • Diodato S L, Hoffmeyer M S. 2008. Contribution of planktonic and detritic fractions to the natural diet of mesozooplankton in Bahía Blanca Estuary. Hydrobiologia, 614(1): 83–90, https://doi.org/10.1007/s10750-008-9538-2.

    Google Scholar 

  • Drumm D J, Loneragan N R. 2005. Reproductive Biology of Holothuria leucospilota in the Cook Islands and the implications of traditional fishing of gonads on the population. New Zealand Journal of Marine and Freshwater Research, 39(1): 141–156, https://doi.org/10.1080/00288330.2005.9517297.

    Google Scholar 

  • Edgar R C, Haas B J, Clemente JC, et al. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2194–2200, https://doi.org/10.1093/bioinformatics/btr381.

    Google Scholar 

  • Fankboner P V. 1978. Suspension-feeding mechanisms of the armoured sea cucumber Psolus chitinoides Clark. Journal of Experimental Marine Biology and Ecology, 31(1): 11–25, https://doi.org/10.1016/0022-0981(78)90133-8.

    Google Scholar 

  • Foster G G, Hodgson A N. 1996. Feeding, tentacle and gut morphology in five species of southern African intertidal holothuroids (Echinodermata). South African Journal of Zoology, 31(2): 70–79, https://doi.org/10.1080/02541858.1996.11448396.

    Google Scholar 

  • Francour P. 1997. Predation on holothurians: a literature review. Invertebrate Biology, 116(1): 52–60, https://doi.org/10.2307/3226924.

    Google Scholar 

  • Gao F, Li F H, Tan J et al. 2014a. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS One, 9(6): e100092, https://doi.org/10.1371/journal.pone.0100092.

    Google Scholar 

  • Gao F, Tan J, Sun H L et al. 2014b. Bacterial diversity of gut content in sea cucumber (Apostichopus japonicus) and its habitat surface sediment. Journal of Ocean University of China, 13(2): 303–310, https://doi.org/10.1007/s11802-014-2078-7.

    Google Scholar 

  • Gao F, Xu Q, Yang H S. 2010. Seasonal variations of food sources in Apostichopus japonicus indicated by fatty acid biomarkers analysis. Journal of Fisheries of China, 34(5): 760–767, https://doi.org/10.3724/SRJ.1231.2010.06768. (in Chinese with English abstract)

    Google Scholar 

  • Gao F, Zhang Y, Wu P L et al. 2022. Bacterial community composition in gut content and ambient sediment of two tropical wild sea cucumbers (Holothuria atra and H. leucospilota). Journal of Oceanology and Limnology, 40(1): 360–372, https://doi.org/10.1007/s00343-021-1001-5.

    Google Scholar 

  • Haas B J, Gevers D, Earl A M. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21(3): 494–504, https://doi.org/10.1101/gr.112730.110.

    Google Scholar 

  • Han H. 2007. Studies on the Bioactive Constituents from Sea cucumber Holothuria leucospilota and Holothuria scabra. Naval Medical University, Shanghai. (in Chinese with English abstract)

    Google Scholar 

  • Hauksson E. 1979. Feeding biology of Stichopus tremulus, a deposit-feeding holothurian. Sarsia, 64(3): 155–160, https://doi.org/10.1080/00364827.1979.10411376.

    Google Scholar 

  • Heinle D R, Harris R P, Ustach J F et al. 1977. Detritus as food for estuarine copepods. Marine Biology, 40(4): 341–353, https://doi.org/10.1007/BF00395727.

    Google Scholar 

  • Heip C, Huys R, Vincx M, et al. 1990. Composition, distribution, biomass and production of North Sea meiofauna. Netherlands Journal of Sea Research, 26(2–4): 333–392.

    Google Scholar 

  • Hu C Q, Li H P, Xia J J et al. 2013. Spawning, larval development and juvenile growth of the sea cucumber Stichopus horrens. Aquaculture, 404–405: 47–54, https://doi.org/10.1016/j.aquaculture.2013.04.007.

    Google Scholar 

  • Hu S M, Guo Z L, Li T et al. 2015. Molecular analysis of in situ diets of coral reef copepods: evidence of terrestrial plant detritus as a food source in Sanya bay, China. Journal of Plankton Research, 37(2): 363–371, https://doi.org/10.1093/plankt/fbv014.

    Google Scholar 

  • Hua H F. 1989. The ecological habit of the sea cucumber Apostichopus japonicus. Aquaculture Overseas, (2): 5–8. (in Chinese)

    Google Scholar 

  • Huang W, Huo D, Yu Z H et al. 2018. Spawning, larval development and juvenile growth of the tropical sea cucumber Holothuria leucospilota. Aquaculture, 488: 22–29, https://doi.org/10.1016/j.aquaculture.2018.01.013.

    Google Scholar 

  • Ito S, Kitamura H. 1997. Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by periphitic diatoms. In: Hagiwara A, Snell T W, Lubzens E et al. eds. Live Food in Aquaculture. Springer, Dordrecht. p. 281–284, https://doi.org/10.1007/978-94-017-2097-7_44.

    Google Scholar 

  • Kitisin T, Suphamungmee W, Meemon K. 2019. Saponinrich extracts from Holothuria leucospilota mediate lifespan extension and stress resistance in Caenorhabditis elegans via daf-16. Journal of Food Biochemistry, 43(12): e13075, https://doi.org/10.1111/jfbc.13075.

    Google Scholar 

  • Leray M, Yang J Y, Meyer C P et al. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10(1): 34, https://doi.org/10.1186/1742-9994-10-34.

    Google Scholar 

  • Liang Z, Geng Y, Ji C M et al. 2019. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Advanced Science, 7(1): 1901850, https://doi.org/10.1002/advs.201901850.

    Google Scholar 

  • Liao Y L. 1997. Fauna Sinica, Echinodermata Holothuroidea. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Liu R Y. 2008. Checklist of Marine Biota of China Seas. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Liu Y, Dong S L, Tian X L et al. 2010. The effect of different macroalgae on the growth of sea cucumbers (Apostichopus japonicus Selenka). Aquaculture Research, 41(11): e881–e885, https://doi.org/10.1111/j.1365-2109.2010.02582.x.

    Google Scholar 

  • Maloy A P, Culloty S C, Slater J W. 2009. Use of PCR-DGGE to investigate the trophic ecology of marine suspension feeding bivalves. Marine Ecology Progress Series, 381: 109–118, https://doi.org/10.3354/meps07959.

    Google Scholar 

  • Martin D L, Ross R M, Quetin L B et al. 2006. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Marine Ecology Progress Series, 319: 155–165, https://doi.org/10.3354/meps319155.

    Google Scholar 

  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1): 10–12, https://doi.org/10.14806/ej.17.1.200.

    Google Scholar 

  • McCclenaghan B, Gibson J F, Shokalla S et al. 2015. Discrimination of grasshopper (Orthoptera: Acrididae) diet and niche overlap using next-generation sequencing of gut contents. Ecology and Evolution, 5(15): 3046–3055, https://doi.org/10.1002/ece3.1585.

    Google Scholar 

  • Mfilinge P L, Makoto T. 2016. Changes in sediment fatty acid composition during passage through the gut of deposit feeding holothurians: Holothuria atra (Jaeger, 1883) and Holothuria leucospilota (Brandt, 1835). Journal of Lipids, 2016: 4579794, https://doi.org/10.1155/2016/4579794.

    Google Scholar 

  • Moriarty D J W. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Marine and Freshwater Research, 33(2): 255–263, https://doi.org/10.1071/MF9820255.

    Google Scholar 

  • Muschiol D, Marković M, Threis I et al. 2008. Predator-prey relationship between the cyclopoid copepod Diacyclops bicuspidatus and a free-living bacterivorous nematode. Nematology, 10(1): 55–62, https://doi.org/10.1163/156854108783360203.

    Google Scholar 

  • O’Rorke R, Lavery S, Chow S et al. 2012. Determining the diet of larvae of western rock lobster (Panulirus cygnus) using high-throughput DNA sequencing techniques. PLoS One, 7(8): e42757, https://doi.org/10.1371/journal.pone.0042757.

    Google Scholar 

  • Paltzat D L, Pearce C M, Barnes P A et al. 2008. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended pacific oysters (Crassostrea gigas Thunberg). Aquaculture, 275(1–4): 124–137, https://doi.org/10.1016/j.aquaculture.2007.12.014.

    Google Scholar 

  • Peng S Y. 2013. Characteristics of Macrobenthic Community Structure in the Yellow Sea and East China Sea. Institute of Oceanology, Chinese Academy of Sciences, Qingdao. (in Chinese with English abstract)

    Google Scholar 

  • Penna A, Casabianca S, Guerra A F et al. 2017. Analysis of phytoplankton assemblage structure in the Mediterranean Sea based on high-throughput sequencing of partial 18S rRNA sequences. Marine Genomics, 36: 49–55, https://doi.org/10.1016/j.margen.2017.06.001.

    Google Scholar 

  • Pompanon F, Deagle B E, Symondson W O C et al. 2012. Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21(8): 1931–1950, https://doi.org/10.1111/j.1365-294X.2011.05403.x.

    Google Scholar 

  • Purcell S W, Conand C, Uthicke S, et al. 2016. Ecological roles of exploited sea cucumbers. Oceanography and Marine Biology: An Annual Review, 54: 367–386, https://doi.org/10.1201/9781315368597-8.

    Google Scholar 

  • Purcell S W, Mercier A, Conand C et al. 2013. Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish and Fisheries, 14(1): 34–59, https://doi.org/10.1111/j.1467-2979.2011.00443.x.

    Google Scholar 

  • Purcell S W, Samyn Y, Conand C. 2012. Commercially Important Sea Cucumbers of the World. FAO Species Catalogue for Fishery Purposes No. 6, FAO, Rome.

    Google Scholar 

  • Riemann L, Alfredsson H, Hansen M M et al. 2010. Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biology Letters, 6(6): 819–822, https://doi.org/10.1098/rsbl.2010.0411.

    Google Scholar 

  • Roberts D. 1979. Deposit-feeding mechanisms and resource partitioning in tropical holothurians. Journal of Experimental Marine Biology and Ecology, 37(1): 43–56, https://doi.org/10.1016/0022-0981(79)90025-X.

    Google Scholar 

  • Roman M R. 1984. Utilization of detritus by the copepod, Acartia tonsa. Limnology and Oceanography, 29(5): 949–959, https://doi.org/10.4319/lo.1984.29.5.0949.

    Google Scholar 

  • Sahraeian N, Sahafi H H, Mosallanejad H et al. 2020. Temporal and spatial variability of free-living nematodes in a beach system characterized by domestic and industrial impacts (Bandar Abbas, Persian Gulf, Iran). Ecological Indicators, 118: 106697, https://doi.org/10.1016/j.ecolinds.2020.106697.

    Google Scholar 

  • Schneider K, Silverman J, Kravitz B et al. 2013. Inorganic carbon turnover caused by digestion of carbonate sands and metabolic activity of holothurians. Estuarine, Coastal and Shelf Science, 133: 217–223, https://doi.org/10.1016/j.ecss.2013.08.029.

    Google Scholar 

  • Schneider K, Silverman J, Woolsey E et al. 2011. Potential influence of sea cucumbers on coral reef CaCO3 budget: a case study at One Tree Reef. Journal of Geophysical Research: Biogeosciences, 116(G4): G04032, https://doi.org/10.1029/2011JG001755.

    Google Scholar 

  • Schooley J D, Karam A P, Kesner B R et al. 2008. Detection of larval remains after consumption by fishes. Transactions of the American Fisheries Society, 137(4): 1044–1049, https://doi.org/10.1577/T07-169.1.

    Google Scholar 

  • Sheppard S K, Harwood J D. 2005. Advances in molecular ecology: tracking trophic links through predator — prey food-webs. Functional Ecology, 19(5): 751–762, https://doi.org/10.1111/j.1365-2435.2005.01041.x.

    Google Scholar 

  • Sloan N A. 1979. Microhabitat and resource utilization in cryptic rocky intertidal echinoderms at Aldabra Atoll, Seychelles. Marine Biology, 54(3): 269–279, https://doi.org/10.1007/BF00395789.

    Google Scholar 

  • Smith T B. 1983. Tentacular ultrastructure and feeding behaviour of Neopentadactyla mixta (Holothuroidea: Dendrochirota). Journal of the Marine Biological Association of the United Kingdom, 63(2): 301–311, https://doi.org/10.1017/S0025315400070697.

    Google Scholar 

  • Smythe A B. 2015. Evolution of feeding structures in the marine Nematode order Enoplida. Integrative and Comparative Biology, 55(2): 228–240, https://doi.org/10.1093/icb/icv043.

    Google Scholar 

  • Sun Z L, Gao Q F, Dong S L et al. 2013. Seasonal changes in food uptake by the sea cucumber Apostichopus japonicus in a farm pond: evidence from C and N stable isotopes. Journal of Ocean University of China, 12(1): 160–168, https://doi.org/10.1007/s11802-012-1952-z.

    Google Scholar 

  • Suzuki N, Hoshino K, Murakami K et al. 2008. Molecular diet analysis of phyllosoma larvae of the Japanese spiny lobster Panulirus japonicus (Decapoda: Crustacea). Marine Biotechnology, 10(1): 49–55, https://doi.org/10.1007/s10126-007-9038-9.

    Google Scholar 

  • Valentini A, Miquel C, Nawaz M A et al. 2009. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Molecular Ecology Resources, 9(1): 51–60, https://doi.org/10.1111/j.1755-0998.2008.02352.x.

    Google Scholar 

  • Wang B, Tian J S, Dong Y et al. 2019. Using carbon and Nitrogen stable isotopes to evaluate feeding habits of sea cucumber Apostichopus japonicus in aquaculture ponds in Liaodong Bay. Fisheries Science, 38(2): 236–240. (in Chinese with English abstract)

    Google Scholar 

  • Wang X F, Lin C G, Xu Q et al. 2017. Impact of Enteromorpha prolifera green tide on oyster feeding using 18S rDNA molecular method. Oceanologia et Limnologia Sinica, 48(6): 1362–1370. (in Chinese with English abstract)

    Google Scholar 

  • Waraniak J M, Marsh T L, Scribner K T. 2019. 18S rRNA metabarcoding diet analysis of a predatory fish community across seasonal changes in prey availability. Ecology and Evolution, 9(3): 1410–1430, https://doi.org/10.1002/ece3.4857.

    Google Scholar 

  • Weber S, Traunspurger W. 2015. The effects of predation by juvenile fish on the meiobenthic community structure in a natural pond. Freshwater Biology, 60(11): 2392–2409, https://doi.org/10.1111/fwb.12665.

    Google Scholar 

  • Wolfe K, Deaker D J, Graba-Landry A et al. 2021. Current and future trophic interactions in tropical shallow-reef lagoon habitats. Coral Reefs, 40(1): 83–96, https://doi.org/10.1007/s00338-020-02017-2.

    Google Scholar 

  • Xia S D, Yang H S, Li Y et al. 2012. Effects of different seaweed diets on growth, digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 338–341: 304–308, https://doi.org/10.1016/j.aquaculture.2012.01.010.

    Google Scholar 

  • Xue Y L, Gao F, Xu Q et al. 2019. Study on feeding selection of environmental sediments and digestive function adaptability of Holothuria atra. Oceanologia et Limnologia Sinica, 50(5): 1070–1079. (in Chinese with English abstract)

    Google Scholar 

  • Yamazaki Y, Sakai Y, Mino S et al. 2020. An annual faecal 16s amplicon sequencing of individual sea cucumber (Apostichopus japonicus) demonstrates the feeding behaviours against eukaryotes in natural environments. Aquaculture Research, 51(9): 3602–3608, https://doi.org/10.1111/are.14710.

    Google Scholar 

  • Yingst J Y. 1976. The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. Journal of Experimental Marine Biology and Ecology, 23(1): 55–69, https://doi.org/10.1016/0022-0981(76)90085-X.

    Google Scholar 

  • Yu Z H, Wu H, Tu Y K et al. 2022. Effects of diet on larval survival, growth, and development of the sea cucumber Holothuria leucospilota. Aquaculture Nutrition, 2022: 8947997, https://doi.org/10.1155/2022/8947997.

    Google Scholar 

  • Yuan X T, Yang H S, Zhou Y et al. 2008. Bioremediation potential of Apostichopus japonicus (Selenka) in coastal bivalve suspension aquaculture system. Chinese Journal of Applied Ecology, 19(4): 866–872. (in Chinese with English abstract)

    Google Scholar 

  • Zhang B L, Sun D Y, Wu Y Q. 1995. Preliminary analysis on the feeding habit of Apostichopus japonicus in the rocky coast waters off Lingshan Island. Science Marine, (3): 11–13. (in Chinese)

    Google Scholar 

  • Zhang H Y, Xu Q, Zhao Y et al. 2016. Sea cucumber (Apostichopus japonicus) eukaryotic food source composition determined by 18s rDNA barcoding. Marine Biology, 163(7): 153, https://doi.org/10.1007/s00227-016-2931-x.

    Google Scholar 

  • Zhao F Q, Liu Q B, Cao J et al. 2020. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats. Food and Chemical Toxicology, 135: 110886, https://doi.org/10.1016/jfct.2019.110886.

    Google Scholar 

  • Zhao P. 2010. Basic Study on Feeding Selectivity of Sea Cucumber Apostichopus japonicus. Institute of Oceanology, Chinese Academy of Sciences, Qingdao. (in Chinese with English abstract)

    Google Scholar 

  • Zhao Y J. 2002. Biodegradation of Apostichopus japonicus Foundation of Bivalve and A. japonicus Polycultursystem. Jilin Agricultural University, Changchun. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 42166005, 42076097), the Hainan Provincial Key Research and Development Program (No. ZDYF2021XDNY130), the Natural Science Foundation of Hainan Province (No. 321RC1023), and the State Key Laboratory of Marine Resource Utilization in South China Sea Open Project (No. MRUKF2021008)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, F., Xu, Q. et al. Eukaryotic food sources analysis in situ of tropical common sea cucumber Holothuria leucospilota based on 18S rRNA gene high-throughput sequencing. J. Ocean. Limnol. 41, 1173–1186 (2023). https://doi.org/10.1007/s00343-022-1302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-022-1302-3

Keyword

Navigation