Skip to main content
Log in

Petrology and geochemistry of cold seep carbonates from the northern Okinawa Trough, East China Sea: implications to early diagenesis

  • Geology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Carbonate samples were collected from the northern Okinawa Trough in the East China Sea in 2013. The petrology, mineralogy, carbon and oxygen isotopes, and rare earth elements (REEs) of these samples were analyzed. Aragonite, high-Mg calcite, and dolomite were the main carbonate minerals, the contents of which varied greatly among the carbonate samples. Petrological observations revealed the common occurrence of framboidal pyrites. The δ13C values of carbonates varied from −53.7‰ to −39.39‰ (average of −47.3‰ based on Vienna Pee Dee Belemnite (V-PDB), n=9), and the δ18O values ranged from 0.6‰ to 3.4‰ (average of 1.9‰; V-PDB, n=9). The carbon and oxygen isotope characteristics indicated that the carbonates precipitated during the anaerobic oxidation of methane. The carbon source was a mixture of thermogenic methane and biogenic methane, possibly with a greater contribution from the former. The oxygen isotope data showed that gas hydrate dissociation occurred during carbonate precipitation. The Ce anomalies suggested that the carbonates precipitated in an anoxic environment. A slight enrichment of middle REEs (MREEs) could be attributable to the early diagenesis. The structures, minerals, oxygen isotopes, and MREEs all indicated that the carbonates experienced some degree of early diagenesis. Therefore, the influence of early diagenesis should be considered when using geological and geochemical proxies to reconstruct original methane seepage environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated and/or analyzed during this study are included in this published article.

References

  • Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3–4): 363–372.

    Article  Google Scholar 

  • Aloisi G, Pierre C, Rouchy J M, Foucher J P, Woodside J, the MEDINAUT Scientific Party. 2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth and Planetary Science Letters, 184(1): 321–338.

    Article  Google Scholar 

  • Baker P A, Kastner M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213(4504): 214–216.

    Article  Google Scholar 

  • Bayon G, Birot D, Ruffine L, Caprais J C, Ponzevera E, Bollinger C, Donval J P, Charlou J L, Voisset M, Grimaud S. 2011. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth and Planetary Science Letters, 312(3–4): 443–452.

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804): 623–626.

    Article  Google Scholar 

  • Burton E A. 1993. Controls on marine carbonate cement mineralogy: review and reassessment. Chemical Geology, 105(1–3): 163–179.

    Article  Google Scholar 

  • Campbell K A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4): 362–407.

    Article  Google Scholar 

  • Cao H, Sun Z L, Wu N Y, Liu W L, Liu C L, Jiang Z K, Geng W, Zhang X L, Wang L B, Zhai B, Jiang X J, Liu L P, Li X. 2020. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough, East China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 155: 103165.

    Article  Google Scholar 

  • Capozzi R, Guido F L, Oppo D, Gabbianelli G. 2012. Methane-derived Authigenic carbonates (MDAC) in northern-central Adriatic Sea: relationships between reservoir and methane seepages. Marine Geology, 332–334: 174–188.

    Article  Google Scholar 

  • Cavagna S, Clari P, Martire L. 1999. The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy). Sedimentary Geology, 126(1–4): 253–270.

    Article  Google Scholar 

  • Chen D F, Dong W Q, Qi L, Chen G Q, Chen X P. 2003. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chemical Geology, 201(1–2): 103–118.

    Article  Google Scholar 

  • Chen D F, Feng D, Su Z, Song Z G, Chen G Q, Cathles III L M. 2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Materials Science and Engineering: C, 26(4): 602–605.

    Article  Google Scholar 

  • Claypool G E, Kaplan I R. 1974. The origin and distribution of methane in marine sediments. In: Kaplan I R ed. Natural Gases in Marine Sediments. Springer, Boston. p.99–139.

    Chapter  Google Scholar 

  • Crémière A, Lepland A, Chand S, Sahy D, Kirsimäe K, Bau M, Whitehouse M J, Noble S R, Martma T, Thorsnes T, Brunstad H. 2016. Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea. Chemical Geology, 432: 16–33.

    Article  Google Scholar 

  • Crémière A, Pierre C, Blanc-Valleron M, Zitter T, Çağatay M N, Henry P. 2012. Methane-derived authigenic carbonates along the North Anatolian fault system in the Sea of Marmara (Turkey). Deep Sea Research Part I: Oceanographic Research Papers, 66: 114–130.

    Article  Google Scholar 

  • Fan L F, Lin S, Hsu C W, Tseng Y T, Yang T F, Huang K M. 2018. Formation and preservation of authigenic pyrite in the methane dominated environment. Deep Sea Research Part I: Oceanographic Research Papers, 138: 60–71.

    Article  Google Scholar 

  • Feng D, Chen D F, Peckmann J. 2009a. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1): 49–56.

    Article  Google Scholar 

  • Feng D, Chen D F, Roberts H H. 2009b. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine and Petroleum Geology, 26(7): 1190–1198.

    Article  Google Scholar 

  • Feng D, Chen D F. 2015. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 74–83.

    Article  Google Scholar 

  • Feng D, Lin Z J, Bian Y Y, Chen D F, Peckmann J, Bohrmann G, Roberts H H. 2013. Rare earth elements of seep carbonates: indication for redox variations and microbiological processes at modern seep sites. Journal of Asian Earth Sciences, 65: 27–33.

    Article  Google Scholar 

  • Franchi F, Rovere M, Gamberi F, Rashed H, Vaselli O, Tassi F. 2017. Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): evidences of episodic methane seepage. Marine and Petroleum Geology, 86: 228–247.

    Article  Google Scholar 

  • Freslon N, Bayon G, Toucanne S, Bermell S, Bollinger C, Chéron S, Etoubleau J, Germain Y, Khripounoff A, Ponzevera E, Rouget M L. 2014. Rare earth elements and neodymium isotopes in sedimentary organic matter. Geochimica et Cosmochimica Acta, 140: 177–198.

    Article  Google Scholar 

  • Frisia S, Borsato A, Hellstrom J. 2018. High spatial resolution investigation of nucleation, growth and early diagenesis in speleothems as exemplar for sedimentary carbonates. Earth-Science Reviews, 178: 68–91.

    Article  Google Scholar 

  • Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geology Reviews, 23(3–4): 299–339.

    Article  Google Scholar 

  • Greinert J, Bohrmann G, Suess E. 2001. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of Authigenic Lithologies. In: Paull C K, Dillon W P eds. Natural Gas Hydrates: Occurrence, Distribution, and Detection. American Geophysical Union, Washington. p.99–113.

    Google Scholar 

  • Guo K, Zhai S K, Yu Z H, Cai Z W, Zhang X. 2016. Determination and tectonic significance of volcanic rock series in the Okinawa Trough. Earth Science, 41(10): 1655–1664. (in Chinese with English abstract)

    Google Scholar 

  • Han X Q, Suess E, Huang Y Y, Wu N Y, Bohrmann G, Su X, Eisenhauer A, Rehder G, Fang Y X. 2008. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Marine Geology, 249(3–4): 243–256.

    Article  Google Scholar 

  • Himmler T, Bach W, Bohrmann G, Peckmann J. 2010. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology, 277(1–2): 126–136.

    Article  Google Scholar 

  • Himmler T, Haley B A, Torres M E, Klinkhammer G P, Bohrmann G, Peckmann J. 2013. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Marine Letters, 33(5): 369–379.

    Article  Google Scholar 

  • Irwin H, Curtis C, Coleman M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269(5625): 209–213.

    Article  Google Scholar 

  • James N P, Choquette P W. 1983. Limestones: the sea floor diagenetic environment. Diagenesis: Geoscience Canada Serial, 10(2): 162–179.

    Google Scholar 

  • Jin X L, Yu P Z. 1987. Tectonic characteristics and evolution of the Okinawa Trough. Science in China Series B, (2): 196–203. (in Chinese)

  • Joseph C, Campbell K A, Torres M E, Martin R A, Pohlman J W, Riedel M, Rose K. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 390: 52–67.

    Article  Google Scholar 

  • Li J W, Peng X T, Bai S J, Chen Z Y, Van Nostrand J D. 2018. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough. Geochimica et Cosmochimica Acta, 222: 363–382.

    Article  Google Scholar 

  • Liebetrau V, Eisenhauer A, Linke P. 2010. Cold seep carbonates and associated cold-water corals at the Hikurangi Margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Marine Geology, 272(1–4): 307–318.

    Article  Google Scholar 

  • Lin Q, Wang J S, Algeo T J, Sun F, Lin R X. 2016. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Marine Geology, 379: 100–108.

    Article  Google Scholar 

  • Liu G D. 1989. Geophysical and geological exploration and hydrocarbon prospects of the East China Sea. China Earth Sciences, 1(1): 43–58.

    Google Scholar 

  • Luan X W, Lu Y T, Zhao K B, Sun D S, Li J. 2008. Geological factors for the development and newly advances in exploration of gas hydrate in East China Sea slope and Okinawa Trough. Geoscience, 22(3): 342–355. (in Chinese with English abstract)

    Google Scholar 

  • Luff R, Wallmann K, Aloisi G. 2004. Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth and Planetary Science Letters, 221(1–4): 337–353.

    Article  Google Scholar 

  • Lumsden D N. 1979. Discrepancy between thin-section and X-ray estimates of dolomite in limestone. Journal of Sedimentary Research, 49(2): 429–435.

    Google Scholar 

  • Magalhães V H, Pinheiro L M, Ivanov M K, Kozlova E, Blinova V, Kolganova J, Vasconcelos C, Mckenzie J A, Bernasconi S M, Kopf A J, Díaz-Del-Río V, González F J, Somoza L. 2012. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz. Sedimentary Geology, 243–244: 155–168.

    Article  Google Scholar 

  • Mazzini A, Ivanov M K, Parnell J, Stadnitskaia A, Cronin B T, Poludetkina E, Mazurenko L, Van Weering T C E. 2004. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Marine Geology, 212(1–4): 153–181.

    Article  Google Scholar 

  • McLennan S M. 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169–200.

    Google Scholar 

  • Moore T S, Murray R W, Kurtz A C, Schrag D P. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229(1–2): 141–154.

    Article  Google Scholar 

  • Morse J W. 2003. Formation and diagenesis of carbonate sediments. Treatise on Geochemistry, 7: 67–85.

    Article  Google Scholar 

  • Naehr T H, Eichhubl P, Orphan V J, Hovland M, Paull C K, Ussler III W, Lorenson T D, Greene H G. 2007. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11–13): 1268–1291.

    Article  Google Scholar 

  • Nöthen K, Kasten S. 2011. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan. Marine Geology, 287(1–4): 1–13.

    Article  Google Scholar 

  • Panieri G, Camerlenghi A, Cacho I, Cervera C S, Canals M, Lafuerza S, Herrera G. 2012. Tracing seafloor methane emissions with benthic foraminifera: results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291–294: 97–112.

    Article  Google Scholar 

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen B T, Heinicke C, Hoefs J, Reitner J. 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177(1–2): 129–150.

    Article  Google Scholar 

  • Peng X T, Guo Z X, Chen S, Sun Z L, Xu H C, Ta K W, Zhang J C, Zhang L J, Li J W, Du M R. 2017. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochimica et Cosmochimica Acta, 205: 1–13.

    Article  Google Scholar 

  • Pierre C, Blanc-Valleron M M, Demange J, Boudouma O, Foucher J P, Pape T, Himmler T, Fekete N, Spiess V. 2012. Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Marine Letters, 32(5): 501–513.

    Article  Google Scholar 

  • Pierre C, Fouquet Y. 2007. Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo-Marine Letters, 27(2–4): 249–257.

    Article  Google Scholar 

  • Pierre C. 2017. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449: 158–164.

    Article  Google Scholar 

  • Roberts H H, Aharon P. 1994. Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Marine Letters, 14(2–3): 135–148.

    Article  Google Scholar 

  • Rongemaille E, Bayon G, Pierre C, Bollinger C, Chu N C, Fouquet Y, Riboulot V, Voisset M. 2011. Rare earth elements in cold seep carbonates from the Niger delta. Chemical Geology, 286(3–4): 196–206.

    Article  Google Scholar 

  • Sackett W M. 1978. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochimica et Cosmochimica Acta, 42(6): 571–580.

    Article  Google Scholar 

  • Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1–2): 29–48.

    Article  Google Scholar 

  • Sibuet J C, Deffontaines B, Hsu S K, Thareau N, Le Formal J P, Liu C S. 1998. Okinawa trough backarc basin: early tectonic and magmatic evolution. Journal of Geophysical Research: Solid Earth, 103(B12): 30245–30267.

    Article  Google Scholar 

  • Smrzka D, Feng D, Himmler T, Zwicker J, Hu Y, Monien P, Tribovillard N, Chen D, Peckmann J. 2020. Trace elements in methane-seep carbonates: potentials, limitations, and perspectives. Earth-Science Reviews, 208: 103263.

    Article  Google Scholar 

  • Suess E. 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103(7): 1889–1916.

    Article  Google Scholar 

  • Sun Z L, Wei H L, Zhang X H, Shang L N, Yin X J, Sun Y B, Xu L, Huang W, Zhang X R. 2015. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 95: 37–53.

    Article  Google Scholar 

  • Sun Z L, Wu N Y, Cao H, Xu C L, Liu L P, Yin X J, Zhang X R, Geng W, Zhang X L. 2019. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough. Chemical Geology, 525: 190–209.

    Article  Google Scholar 

  • Swart P K, Oehlert A M. 2018. Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis. Sedimentary Geology, 364: 14–23.

    Article  Google Scholar 

  • Swart P K. 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62(5): 1233–1304.

    Article  Google Scholar 

  • Tong H P, Wang Q X, Peckmann J, Cao Y C, Chen L Y, Zhou W D, Chen D F. 2016. Diagenetic alteration affecting δ18O, δ13C and 87Sr/86Sr signatures of carbonates: a case study on cretaceous seep deposits from Yarlung-Zangbo Suture Zone, Tibet, China. Chemical Geology, 444: 71–82.

    Article  Google Scholar 

  • Wang Q X, Tong H P, Huang C Y, Chen D F. 2018. Tracing fluid sources and formation conditions of Miocene hydrocarbon-seep carbonates in the central Western Foothills, Central Taiwan. Journal of Asian Earth Sciences, 168: 186–196.

    Article  Google Scholar 

  • Wang S H, Yan W, Chen Z, Zhang N, Chen H. 2014. Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea. Marine and Petroleum Geology, 57: 482–493.

    Article  Google Scholar 

  • Warthmann R, Van Lith Y, Vasconcelos C, McKenzie J A, Karpoff A M. 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12): 1091–1094.

    Article  Google Scholar 

  • Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1–3): 291–314.

    Article  Google Scholar 

  • Wright J, Schrader H, Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3): 631–644.

    Article  Google Scholar 

  • Wu B H, Zhang G X, Zhu Y H, Lu Z Q, Chen B Y. 2003. Progress of gas hydrate investigation in China offshore. Earth Science Frontiers, 10(1): 177–189. (in Chinese with English abstract)

    Google Scholar 

  • Wu N Y, Sun Z L, Lu J G, Cai F, Cao H, Geng W, Luo M, Zhang X L, Li Q, Shang L N, Wang L B, Zhang X R, Xu C L, Zhai B, Li X, Gong J M, Hu Y, Lin G M. 2019. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough. Marine Geology & Quaternary Geology, 39(5): 23–35. (in Chinese with English abstract)

    Google Scholar 

  • Wu Z Y, Li J B, Jin X L, Shang J H, Li S J, Jin X B. 2014. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough. Science China Earth Sciences, 57(8): 1885–1896.

    Article  Google Scholar 

  • Xu N, Wu S G, Wang X J, Guo J H. 2006. Seismic study of the gas hydrate in the continental slope of the Okinawa Trough, East China Sea. Progress in Geophysics, 21(2): 564–571. (in Chinese with English abstract)

    Google Scholar 

  • Yang K H, Zhu Z Z, Dong Y H, Chu F Y, Zhang W Y, 2021. Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough. Acta Oceanologica Sinica, 40(12): 114–124.

    Article  Google Scholar 

  • Zhao D B, Wan S M. 2015. Research progress of tracing sediment sources in Okinawa Trough. Marine Geology Frontiers, 31(2): 32–41. (in Chinese with English abstract)

    Google Scholar 

  • Zwicker J, Smrzka D, Himmler T, Monien P, Gier S, Goedert J L, Peckmann J. 2018. Rare earth elements as tracers for microbial activity and early diagenesis: a new perspective from carbonate cements of ancient methane-seep deposits. Chemical Geology, 501: 77–85.

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to the crew and scientists on R/V Kexue Yihao for collecting samples during the expedition in June 2013, which was organized by the Institute of Oceanology, Chinese Academy of Sciences (CAS). We thank Dr. Xiaoying JIANG at Tongji University for analyzing the carbon and oxygen isotopes, Dr. Liang QI at the Institute of Geochemistry, CAS, for analyzing the REEs, and Dr. Jihao ZHU at the Key Laboratory of Submarine Geosciences, Ministry of Natural Resources for his help in the SEM analysis. We thank the two anonymous reviewers for their constructive comments, which helped to considerably improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehong Yang.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41476050, 41106047)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Zhu, Z., Dong, Y. et al. Petrology and geochemistry of cold seep carbonates from the northern Okinawa Trough, East China Sea: implications to early diagenesis. J. Ocean. Limnol. 40, 1388–1403 (2022). https://doi.org/10.1007/s00343-021-1148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1148-0

Keyword