Skip to main content

Advertisement

Log in

The ecological response of natural phytoplankton population and related metabolic rates to future ocean acidification

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Ocean acidification (OA) and global warming-induced water column stratification can significantly alter phytoplankton-related biological activity in the marine ecosystem. Yet how these changes may play out in the tropical Indian Ocean remains unclear. This study investigated the ecological and metabolic responses of the different phytoplankton functional groups to elevated CO2 partial pressure and nitrate deficiency in two different environments of the eastern Indian Ocean (EIO). It is revealed that phytoplankton growth and metabolic rates are more sensitive to inorganic nutrients rather than CO2. The combined interactive effects of OA and N-limitation on phytoplankton populations are functional group-specific. In particular, the abundance and calcification rate of calcifying coccolithophores are expected to be enhanced in the future EIO. The underlying mechanisms for this enhancement may be ascribed to coccolithophore’s lower carbon concentrating mechanisms (CCMs) efficiency and OA-induced [HCO 3 ] increase. In comparison, the abundance of non-calcifying microphytoplankton (e.g., diatoms and dinoflagellates) and primary productivity would be inhibited under those conditions. Different from previous laboratory experiments, interspecific competition for resources would be an important consideration in the natural phytoplankton populations. These combined factors would roughly determine calcifying coccolithophores as “winners” and non-calcifying microphytoplankton as “losers” in the future ocean scenario. Due to the large species-specific differences in phytoplankton sensitivity to OA, comprehensive investigations on oceanic phytoplankton communities are essential to precisely predict phytoplankton ecophysiological response to ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Bach L T, Alvarez-Fernandez S, Hornick T, Stuhr A, Riebesell U. 2017. Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS One, 12(11): e0188198, https://doi.org/10.1371/journal.pone.0188198.

    Article  Google Scholar 

  • Bach L T, Taucher J. 2019. CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities. Ocean Science, 15(4): 1159–1175, https://doi.org/10.5194/os-15-1159-2019.

    Article  Google Scholar 

  • Balch W M, Drapeau D T, Fritz J J. 2000. Monsoonal forcing of calcification in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 47(7–8): 1301–1337, https://doi.org/10.1016/S0967-0645(99)00145-9.

    Article  Google Scholar 

  • Bellerby R G J. 2017. Oceanography: ocean acidification without borders. Nature Climate Change, 7(4): 241–242, https://doi.org/10.1038/nclimate3247.

    Article  Google Scholar 

  • Boyd P W, Lennartz S T, Glover D M, Doney S C. 2015. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Climate Change, 5(1): 71–79, https://doi.org/10.1038/nclimate2441.

    Article  Google Scholar 

  • Chen G X, Han W Q, Li Y L, Wang D X. 2016a. Interannual variability of equatorial eastern Indian Ocean upwelling: local versus remote forcing. Journal of Physical Oceanography, 46(3): 789–807, https://doi.org/10.1175/jpo-d-15-0117.1.

    Article  Google Scholar 

  • Chen G X, Han W Q, Shu Y Q, Li Y L, Wang D X, Xie Q. 2016b. The role of Equatorial Undercurrent in sustaining the Eastern Indian Ocean upwelling. Geophysical Research Letters, 43(12): 6444–6451, https://doi.org/10.1002/2016GL069433.

    Article  Google Scholar 

  • Chen G X, Li Y L, Xie Q, Wang D X. 2018. Origins of eddy kinetic energy in the Bay of Bengal. Journal of Geophysical Research: Oceans, 123(3): 2097–2115, https://doi.org/10.1002/2017JC013455.

    Article  Google Scholar 

  • Davey M, Tarran G A, Mills M M, Ridame C, Geider R J, LaRoche J. 2008. Nutrient limitation ofpicophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnology and Oceanography, 53(5): 1722–1733, https://doi.org/10.4319/lo.2008.53.5.1722.

    Article  Google Scholar 

  • Doney S C, Fabry V J, Feely R A, Kleypas J A. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science, 1: 169–192, https://doi.org/10.1146/annurev.marine.010908.163834.

    Article  Google Scholar 

  • Duarte C M, Hendriks I E, Moore T S, Olsen Y S, Steckbauer A, Ramajo L, Carstensen J, Trotter J A, McCulloch M. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts, 36(2): 221–236.

    Article  Google Scholar 

  • Fu F X, Tatters A O, Hutchins D A. 2012. Global change and the future of harmful algal blooms in the ocean. Marine Ecology Progress Series, 470: 207–233, https://doi.org/10.3354/meps10047.

    Article  Google Scholar 

  • Fu F X, Warner M E, Zhang Y H, Feng Y Y, Hutchins D A. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology, 43(3): 485–496, https://doi.org/10.1111/j.1529-8817.2007.00355.x.

    Article  Google Scholar 

  • Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (CLEVE) Gran. Canadian Journal of Microbiology, 8(2): 229–239.

    Article  Google Scholar 

  • Hama T, Kawashima S, Shimotori K, Satoh Y, Omori Y, Wada S, Adachi T, Hasegawa S, Midorikawa T, Ishii M, Saito S, Sasano D, Endo H, Nakayama T, Inouye I. 2012. Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production. Journal of Oceanography, 68(1): 183–194, https://doi.org/10.1007/s10872-011-0084-6.

    Article  Google Scholar 

  • Hare C E, Leblanc K, DiTullio G R, Kudela R M, Zhang Y H, Lee P A, Riseman S, Hutchins D A. 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marine Ecology Progress Series, 352: 9–16, https://doi.org/10.3354/meps07182.

    Article  Google Scholar 

  • Hofmann G E, Barry J P, Edmunds P J, Gates R D, Hutchins D A, Klinger T, Sewell M A. 2010. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annual Review of Ecology, 41(1): 127–147, https://doi.org/10.1146/annurev.ecolsys.110308.120227.

    Article  Google Scholar 

  • Iglesias-Rodriguez M D, Halloran P R, Rickaby R E M, Hall I R, Colmenero-Hidalgo E, Gittins J R, Green D R H, Tyrrell T, Gibbs S J, von Dassow P, Rehm E, Armbrust E V, Boessenkool K P. 2008. Phytoplankton calcification in a high-CO2 world. Science, 320(5874): 336–340, https://doi.org/10.1126/science.1154122.

    Article  Google Scholar 

  • Kim J M, Lee K, Shin K, Kang J H, Lee H W, Kim M, Jang P G, Jang M C. 2006. The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51(4): 1629–1636, https://doi.org/10.4319/lo.2006.51.4.1629.

    Article  Google Scholar 

  • Kleypas J A, Feely R A, Fabry V J, Langdon C, Sabine C L, Robbins L L. 2006. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research. NSF, NOAA, USGS, Arlington, Washington, Reston.

    Google Scholar 

  • Krumhardt K M, Lovenduski N S, Long M C, Levy M, Lindsay K, Moore J K, Nissen C. 2019. Coccolithophore growth and calcification in an acidified ocean: insights from Community Earth System Model simulations. Journal of Advances in Modeling Earth Systems, 11(5): 1418–1437, https://doi.org/10.1029/2018MS001483.

    Article  Google Scholar 

  • Li C L. 2019. A Comparative Study of Seasonal Acidification in Southern Nearshore and Central Offshore Waters of the North Yellow Sea. Shandong University, Ji’nan. (in Chinese with English abstract)

    Google Scholar 

  • Liu H J, Sun J, Wang D X, Zhang X D, Zhang C X, Song S Q, Thangaraj S. 2018. Distribution of living coccolithophores in eastern Indian Ocean during spring intermonsoon. Scientific Reports, 8(1): 12488, https://doi.org/10.1038/s41598-018-29688-w.

    Article  Google Scholar 

  • Luo J J, Sasaki W, Masumoto Y. 2012. Indian Ocean warming modulates Pacific climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(46): 18701–18706.

    Article  Google Scholar 

  • Marinov I, Doney S C, Lima I D. 2010. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences, 7(12): 3941–3959, https://doi.org/10.5194/bg-7-3941-2010.

    Article  Google Scholar 

  • Meyer J, Riebesell U. 2015. Reviews and syntheses: responses of coccolithophores to ocean acidification: a metaanalysis. Biogeosciences, 12(6): 1671–1682, https://doi.org/10.5194/bg-12-1671-2015.

    Article  Google Scholar 

  • Mochizuki T, Kimoto M, Watanabe M, Chikamoto Y, Ishii M. 2016. Interbasin effects of the Indian Ocean on Pacific decadal climate change. Geophysical Research Letters, 43(13): 7168–7175.

    Article  Google Scholar 

  • Paasche E, Brubak S. 1994. Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia, 33(5): 324–330, https://doi.org/10.2216/i0031-8884-33-5-324.1.

    Article  Google Scholar 

  • Qi D, Chen L Q, Chen B S, Gao Z Y, Zhong W L, Feely R, Anderson L, Sun H, Chen J F, Chen M, Zhan L Y, Zhang Y H, Cai W J. 2017. Increase in acidifying water in the western Arctic Ocean. Nature Climate Change, 7(3): 195–199, https://doi.org/10.1038/nclimate3228.

    Article  Google Scholar 

  • Ridgwell A, Schmidt D N, Turley C, Brownlee C, Maldonado M T, Tortell P, Young J R. 2009. From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification. Biogeosciences, 6(11): 2611–2623.

    Article  Google Scholar 

  • Riebesell U, Gattuso J P. 2015. Lessons learned from ocean acidification research. Nature Climate Change, 5(1): 12–14.

    Article  Google Scholar 

  • Riebesell U, Schulz K G, Bellerby R G J, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450(7169): 545–548, https://doi.org/10.1038/nature06267.

    Article  Google Scholar 

  • Roleda M Y, Cornwall C E, Feng Y Y, McGraw C M, Smith A M, Hurd C L. 2015. Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS One, 10(10): e0140394, https://doi.org/10.1371/journal.pone.0140394.

    Article  Google Scholar 

  • Sarmiento J L, Slater R, Barber R, Bopp L, Doney S C, Hirst A C, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall S A, Stouffer R. 2004. Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles, 18(3): GB3003.

    Article  Google Scholar 

  • Shi D, Xu Y, Morel F M M. 2009. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences, 6(7): 1199–1207.

    Article  Google Scholar 

  • Smith H E K, Tyrrell T, Charalampopoulou A, Dumousseaud C, Legge O J, Birchenough S, Pettit L R, Garley R, Hartman S E, Hartman M C, Sagoo N, Daniels C J, Achterberg E P, Hydes D J. 2012. Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay. Proceedings of the National Academy of Sciences of the United States of America, 109(23): 8845–8849, https://doi.org/10.1073/pnas.1117508109.

    Article  Google Scholar 

  • Strutton P G, Coles V J, Hood R R, Matear R J, McPhaden M J, Phillips H E. 2015. Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition. Biogeosciences, 12(8): 2367–2382, https://doi.org/10.5194/bg-12-2367-2015.

    Article  Google Scholar 

  • Sun J, Liu D Y, Qian S B. 2002. A quantitative research and analysis method for marine phytoplankton: an introduction to Utermöhl method and its modification. Journal of Oceanography of Huanghai & Bohai Seas, 20(2): 105–112. (in Chinese)

    Google Scholar 

  • Tortell P D, DiTullio G R, Sigman D M, Morel F M M. 2002. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series, 236: 37–43, https://doi.org/10.3354/meps236037.

    Article  Google Scholar 

  • Tortell P D, Payne C D, Li Y Y, Trimborn S, Rost B, Smith W O, Riesselman C, Dunbar R B, Sedwick P, DiTullio G R. 2008. CO2 sensitivity of Southern Ocean phytoplankton. Geophysical Research Letters, 35(4): L04605, https://doi.org/10.1029/2007GL032583.

  • Walker C. 2018. Mechanisms of Calcification in Coccolithophores. University of Southampton, Southampton.

    Google Scholar 

  • Wood H L, Spicer J I, Widdicombe S. 2008. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B: Biological Sciences, 275(1644): 1767–1773, https://doi.org/10.1098/rspb.2008.0343.

    Article  Google Scholar 

  • Xu K, Fu F X, Hutchins D A. 2014. Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability. Limnology and Oceanography, 59(6): 1919–1931, https://doi.org/10.4319/lo.2014.59.6.1919.

    Article  Google Scholar 

  • Yoshimura T, Nishioka J, Suzuki K, Hattori H, Kiyosawa H, Watanabe Y W. 2010. Impacts of elevated CO2 on organic carbon dynamics in nutrient depleted Okhotsk Sea surface waters. Journal of Experimental Marine Biology and Ecology, 395(1–2): 191–198, https://doi.org/10.1016/j.jembe.2010.09.001.

    Article  Google Scholar 

  • Zapata M, Rodríguez F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series, 195: 29–45, https://doi.org/10.3354/meps195029.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Dr. Misun YUN (Tianjin University of Science and Technology, China) and Dr. Dhiraj Dhondiram NARALE (Adani Power, India) for comments on the manuscript. Special thanks to the Open Cruise Project in the eastern Indian Ocean of National Natural Science Foundation of China (NORC2017-10) for sharing their ship time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41876134, 41676112, 41276124, 41706184) and the Changjiang Scholar Program of Chinese Ministry of Education of China (No. T2014253) to Jun SUN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhao, Y., Wu, C. et al. The ecological response of natural phytoplankton population and related metabolic rates to future ocean acidification. J. Ocean. Limnol. 40, 999–1011 (2022). https://doi.org/10.1007/s00343-021-1136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1136-4

Keywords

Navigation