Abstract
Climate change can affect fish individuals or schools, and consequently the fisheries. Studying future changes of fish distribution and abundance helps the scientific management of fisheries. The dynamic bioclimate envelope model (DBEM) was used to identify the “environmental preference profiles” of the studied species based on outputs from three Earth system models (ESMs). Changes in ocean conditions in climate change scenarios could be transformed by the model into those in relative abundance and distribution of species. Therefore, the distributional response of 17 demersal fishes to climate change in the Yellow Sea could be projected from 1970 to 2060. Indices of latitudinal centroid (LC) and mean temperature of relative abundance (MTRA) were used to represent the results conducted by model. Results present that 17 demersal fish species in the Yellow Sea show a trend of anti-poleward shift under both low-emission scenario (RCP 2.6) and high-emission scenario (RCP 8.5) from 1970 to 2060, with the projected average LC in three ESMs shifting at a rate of −1.17±4.55 and −2.76±3.82 km/decade, respectively, which is contrary to the previous projecting studies of fishes suggesting that fishes tend to move toward higher latitudes under increased temperature scenarios. The Yellow Sea Cold Water Mass could be the major driver resulting in the shift, which shows a potential significance to fishery resources management and marine conservation, and provides a new perspective in fish migration under climate change.
This is a preview of subscription content, access via your institution.
Data Availability Statement
The data that support the findings of this study are openly available in Science at https://doi.org/10.1126/science.aag2331, reference (Cheung et al., 2016b). The data that support the findings of this study are openly available in FishBase at https://www.fishbase.org, the Oceanic Biogeographic Information System at http://iobis.org, SeaLifeBase at https://www.sealifebase.org, and Sea Around Us Project at https://www.seaaroundus.org.
References
Baudron A R, Needle C L, Rijnsdorp A D, Marshall C T. 2013. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Global Change Biology, 20(4): 1023–1031, https://doi.org/10.1111/gcb.12514.
Belkin I M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography, 81(1–4): 207–213, https://doi.org/10.1016/j.pocean.2009.04.011.
Calbet A, Sazhin A F, Nejstgaard J C, Berger S A, Tait Z S, Olmos L, Sousoni D, Isari S, Martínez R A, Bouquet J M, Thompson E M, Båmstedt U, Jakobsen H H. 2014. Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency. PLoS One, 9(4): e94388, https://doi.org/10.1371/journal.pone.0094388.
Chen Y L, Hu D X, Wang F. 2004. Long-term variabilities of thermodynamic structure of the East China Sea Cold Eddy in summer. Chinese Journal of Oceanology and Limnology, 22(3): 224–230, https://doi.org/10.1007/BF02842552.
Chen Y L, Shan X J, Wang N, Jin X S, Guan L S, Gorfine H, Yang T, Dai F Q. 2019. Assessment of fish vulnerability to climate change in the Yellow Sea and Bohai Sea. Marine and Freshwater Research, 71(7): 729–736, https://doi.org/10.1071/MF19101.
Cheung W W L, Brodeur R D, Okey T A, Pauly D. 2015. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Progress in Oceanography, 130: 19–31, https://doi.org/10.1016/j.pocean.2014.09.003.
Cheung W W L, Dunne J P, Sarmiento J L, Pauly D. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 68(6): 1008–1018, https://doi.org/10.1093/icesjms/fsr012.
Cheung W W L, Jones M C, Reygondeau G, Stock C A, Lam V W Y, Frölicher T L. 2016a. Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling, 325: 57–66, https://doi.org/10.1016/j.ecolmodel.2015.12.018.
Cheung W W L, Lam V W Y, Pauly D. 2008. Dynamic bioclimate envelope model to predict climate-induced changes in distribution of marine fishes and invertebrates. In: Cheung W W L, Lam V W Y, Pauly D eds. Modelling Present and Climate-shifted Distribution of Marine Fishes and Invertebrates. University of British Columbia, Canada. p.5–50.
Cheung W W L, Lam V W Y, Sarmiento J L, Kearney K, Watson R, Pauly D. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10(3): 235–251, https://doi.org/10.1111/j.1467-2979.2008.00315.X.
Cheung W W L, Reygondeau G, Frölicher T L. 2016b. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science, 354(6319): 1591–1594, https://doi.org/10.1126/science.aag2331.
Cheung W W L, Sarmiento J L, Dunne J, Frölicher T L, Lam V W Y, Deng Palomares M L, Watson R, Pauly D. 2013a. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 3(3): 254–258, https://doi.org/10.1038/nclimate1691.
Cheung W W L, Watson R, Pauly D. 2013b. Signature of ocean warming in global fisheries catch. Nature, 497(7449): 365–368, https://doi.org/10.1038/nature12156.
Close C H, Cheung W W L, Hodgson S, Lam V, Watson R, Pauly D. 2006. Distribution ranges of commercial fishes and invertebrates. In: Palomares M L D, Stergiou K I, Pauly D eds. Fishes in Databases and Ecosystems. Fisheries Centre Research Report. University of British Columbia, Vancouver. p.27–37.
Dai F Z, Zhu L, Chen Y L. 2020. Variations of fishery resource structure in the Yellow Sea and East China Sea. Progress in Fishery Sciences, 41(1): 1–10, https://doi.org/10.19663/j.issn2095-9869.20181120001. (in Chinese with English abstract)
Denney N H, Jennings S, Reynolds J D. 2002. Life-history correlates of maximum population growth rates in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 269(1506): 2229–2237, https://doi.org/10.1098/rspb.2002.2138.
Dulvy N K, Rogers S I, Jennings S, Stelzenmüller V, Dye S R, Skjoldal H R. 2008. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology, 45(4): 1029–1039, https://doi.org/10.1111/j.1365-2664.2008.01488.x.
Edwards M, Richardson A J. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430(7002): 881–884, https://doi.org/10.1038/nature02808.
Frölicher T L, Rodgers K B, Stock C A, Cheung W W L. 2016. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochemical Cycles, 30(8): 1224–1243, https://doi.org/10.1002/2015GB005338.
Golden C D, Allison E H, Cheung W W L, Dey M M, Halpern B S, McCauley D J, Smith M, Vaitla B, Zeller D, Myers S S. 2016. Nutrition: fall in fish catch threatens human health. Nature, 534(7607): 317–320, https://doi.org/10.1038/534317a.
Harley C D G. 2011. Climate change, keystone predation, and biodiversity loss. Science, 334(6059): 1124–1127, https://doi.org/10.1126/science.1210199.
Hsueh Y 1988. Recent current observations in the eastern Yellow Sea. Journal of Geophysical Research: Oceans, 93(C6): 6875–6884, https://doi.org/10.1029/JC093iC06p06875.
Huang J S, Sun Y, Jia H B, Yang Q, Tang Q S. 2014. Spatial distribution and reconstruction potential of Japanese anchovy (Engraulis japonicus) based on scale deposition records in recent anaerobic sediment of the Yellow Sea and East China Sea. Acta Oceanologica Sinica, 33(12): 138–144, https://doi.org/10.1007/s13131-014-0573-8.
Hur H B, Jacobs G A, Teague W J. 2000. Monthly variations of water masses in the Yellow and East China Seas. Journal of Oceanography, 56(3): 359, https://doi.org/10.1023/A:1011163919440.
Jiang B J, Bao X W, Wu D X, Xu J P. 2007. Interannual variation of temperature and salinity of northern Huanghai Sea Cold Water Mass and its probable cause. Acta Oceanologica Sinica, 29(4): 1–10, https://doi.org/10.3321/j.issn:0253-4193.2007.04.001. (in Chinese with English abstract)
Jin X S, Tang Q S. 1996. Changes in fish species diversity and dominant species composition in the Yellow Sea. Fisheries Research, 26(3–4): 337–352, https://doi.org/10.1016/0165-7836(95)00422-X.
Jones M C, Dye S R, Pinnegar J K, Warren R, Cheung W W L. 2012. Modelling commercial fish distributions: prediction and assessment using different approaches. Ecological Modelling, 225: 133–145, https://doi.org/10.1016/j.ecolmodel.2011.11.003.
Kaschner K, Tittensor D P, Ready J, Gerrodette T, Worm B. 2011. Current and future patterns of global marine mammal biodiversity. PLoS One, 6(5): e19653, https://doi.org/10.1371/journal.pone.0019653.
Kwiatkowski L, Bopp L, Aumont O, Ciais P, Cox P M, Laufkötter C, Li Y, Séférian R. 2017. Emergent constraints on projections of declining primary production in the tropical oceans. Nature Climate Change, 7(5): 355–358, https://doi.org/10.1038/nclimate3265.
Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O, Bopp L, Buitenhuis E, Doney S C, Dunne J, Hashioka T, Hauck J, Hirata T, John J, Le Quéré C, Lima I D, Nakano H, Seferian R, Totterdell I, Vichi M, Völker C. 2015. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 12(23): 6955–6984, https://doi.org/10.5194/bg-12-6955-2015.
Lefort S, Aumont O, Bopp L, Arsouze T, Gehlen M, Maury O. 2015. Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Global Change Biology, 21(1): 154–164, https://doi.org/10.1111/gcb.12679.
Li A, Yu F, Si G C, Wei C J. 2017. Long-term temperature variation of the Southern Yellow Sea Cold Water Mass from 1976 to 2006. Chinese Journal of Oceanology and Limnology, 35(5): 1032–1044, https://doi.org/10.1007/s00343-017-6037-1.
Li Z L, Shan X J, Jin X S, Dai F Q. 2011. Long-term variations in body length and age at maturity of the small yellow croaker (Larimichthys polyactis Bleeker, 1877) in the Bohai Sea and the Yellow Sea, China. Fisheries Research, 110(1): 67–74, https://doi.org/10.1016/j.fishres.2011.03.013.
Lie H J, Cho C H, Lee S. 2013. Frontal circulation and westward transversal current at the Yellow Sea entrance in winter. Journal of Geophysical Research: Oceans 118(8): 3851–3870, https://doi.org/10.1002/jgrc.20280.
Liu X, Huang B Q, Huang Q, Wang L, Ni X B, Tang Q S, Sun S, Wei H, Liu S M, Li C L, Sun J. 2015. Seasonal phytoplankton response to physical processes in the southern Yellow Sea. Journal of Sea Research, 95: 45–55, https://doi.org/10.1016/j.seares.2014.10.017.
Mei X, Li R H, Zhang X H, Liu Q S, Liu J X, Wang Z B, Lan X H, Liu J, Sun R T. 2016. Evolution of the Yellow Sea Warm Current and the Yellow Sea Cold Water Mass since the Middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 442: 48–60, https://doi.org/10.1016/j.palaeo.2015.11.018.
Miloslavich P, Bax N J, Simmons S E, Klein E, Appeltans W, Aburto-Oropeza O, Andersen Garcia M, Batten S D, Benedetti-Cecchi L, Checkley D M, Chiba S, Duffy J E, Dunn D C, Fischer A, Gunn J, Kudela R, Marsac F, Muller-Karger F E, Obura D, Shin Y J. 2018. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Global Change Biology, 24(6): 2416–2433, https://doi.org/10.1111/gcb.14108.
Naimie C E, Blain C A, Lynch D R. 2001. Seasonal mean circulation in the Yellow Sea—a model-generated climatology. Continental Shelf Research, 21(6–7): 667–695, https://doi.org/10.1016/S0278-4343(00)00102-3.
Payne M R, Barange M, Cheung W W L, Mackenzie B R, Batchelder H P, Cormon X, Eddy T D, Fernandes J A, Hollowed A B, Jones M C, Link J S, Neubauer P, Ortiz I, Queirós A M, Paula J R. 2016. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine Science, 73(5): 1272–1282, https://doi.org/10.1093/icesjms/fsv231.
Perry A L, Low P J, Ellis J R, Reynolds J D. 2005. Climate change and distribution shifts in marine fishes. Science, 308(5730): 1912–1915, https://doi.org/10.1126/science.1111322.
Pinsky M L, Worm B, Fogarty M J, Sarmiento J L, Levin S A. 2013. Marine taxa track local climate velocities. Science, 341(6151): 1239–1242, https://doi.org/10.1126/science.1239352.
Reygondeau G, Maury O, Beaugrand G, Fromentin J M, Fonteneau A, Cury P. 2012. Biogeography of tuna and billfish. Journal of Biogeography, 39(1): 114–129, https://doi.org/10.1111/j.1365-2699.2011.02582.x.
Sheridan J A, Bickford D. 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8): 401–406, https://doi.org/10.1038/nclimate1259.
Simpson S D, Jennings S, Johnson M P, Blanchard J L, Schön P J, Sims D W, Genner M J. 2011. Continental shelf-wide response of a fish assemblage to rapid warming of the Sea. Current Biology, 21(18): 1565–1570, https://doi.org/10.1016/j.cub.2011.08.016.
Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee T J C, Fromentin J M, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature, 416(6879): 389–395, https://doi.org/10.1038/416389a.
Wei H, Shi J, Lu Y Y, Peng Y. 2010. Interannual and long-term hydrographic changes in the Yellow Sea during 1977–1998. Deep Sea Research Part II: Topical Studies in Oceanography, 57(11–12): 1025–1034, https://doi.org/10.1016/j.dsr2.2010.02.004.
Xu B D, Jin X S, Liang Z L. 2003. Changes of demersal fish community structure in the Yellow Sea during the autumn. Journal of Fishery Sciences of China, 10(2): 148–154, https://doi.org/10.3321/j.issn:1005-8737.2003.02.013. (in Chinese with English abstract)
Xu B D, Jin X S. 2005. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985–2002. Fisheries Research, 71(1): 79–91, https://doi.org/10.1016/j.fishres.2004.07.011.
Yuan D L, Li Y, Qiao F L, Zhao W. 2013. Temperature inversion in the Huanghai Sea bottom cold water in summer. Acta Oceanologica Sinica, 32(3): 42–47, https://doi.org/10.1007/s13131-013-0287-3.
Yuan D L, Zhu J R, Li C Y, Hu D X. 2008. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations. Journal of Marine Systems, 70(1–2): 134–149, https://doi.org/10.1016/j.jmarsys.2007.04.002.
Zhang B, Tang Q S. 2004. Study on trophic level of important resources species at high troph levels in the Bohai Sea, Yellow Sea and East China Sea. Advances in Marine Science, 22(4): 393–404, https://doi.org/10.3969/j.issn.1671-6647.2004.04.001. (in Chinese with English abstract)
Zhao X, Hamre J, Li F, Jin X, Tang Q. 2003. Recruitment, sustainable yield and possible ecological consequences of the sharp decline of the anchovy (Engraulis japonicus) stock in the Yellow Sea in the 1990s. Fisheries Oceanography, 12(4–5): 495–501, https://doi.org/10.1046/j.1365-2419.2003.00262.x.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Supported by the National Natural Science Foundation of China (No. 42176234), the Chinese Arctic and Antarctic Creative Program (No. JDXT2018-01), and the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0402)
Rights and permissions
About this article
Cite this article
Zhu, Y., Lin, Y., Chu, J. et al. Modelling the variation of demersal fish distribution in Yellow Sea under climate change. J. Ocean. Limnol. 40, 1544–1555 (2022). https://doi.org/10.1007/s00343-021-1126-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00343-021-1126-6
Keyword
- climate change
- dynamic bioclimate envelope model
- distribution shifts
- relative abundance
- demersal fish
- Yellow Sea