Skip to main content

Advertisement

Log in

Effects of climate change on the potential habitat distribution of swimming crab Portunus trituberculatus under the species distribution model

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Over the last decades, the species distribution model (SDM) has become an essential tool for studying the potential effects of climate change on species distribution. In this study, an ensemble SDM was developed to predict the changes in species distribution of swimming crab Portunus trituberculatus across different seasons in the future (2050s and 2100s) under the climate scenarios of Representative Concentration Pathway (RCP)4.5 and RCP8.5. Results of the ensemble SDM indicate that the distribution of this species will move northward and exhibit evident seasonal variations. Among the four seasons, the suitable habitat for this species will be significantly reduced in summer, with loss rates ranging from 45.23% (RCP4.5) to 88.26% (RCP.8.5) by the 2100s. The loss of habitat will mostly occur in the East China Sea and the southern part of the Yellow Sea, while a slight increase in habitat will occur in the northern part of the Bohai Sea. These findings provide an information forecast for this species in the future. Such forecast will be helpful in improving fishery management under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Aguirre-Gutiérrez J, Carvalheiro L G, Polce C, van Loon E E, Raes N, Reemer M, Biesmeijer J C. 2013. Fit-for-Purpose: species distribution model performance depends on evaluation criteria-Dutch hoverflies as a case study. PLoS One, 8(5): e63708.

    Article  Google Scholar 

  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão E A, De Clerck O. 2018. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3): 277–284, https://doi.org/10.1111/geb.12693.

    Article  Google Scholar 

  • Basher Z, Bowden D A, Costello M J. 2014. Global marine environment datasets (GMED). Version 1.0 (Rev. 01. 2014). http://gmed.auckland.ac.nz. Accessed on 2018-10-30.

  • Becker E A, Carretta J V, Forney K A, Barlow J, Brodie S, Hoopes R, Jacox M G, Maxwell S M, Redfern J V, Sisson N B, Welch H, Hazen E L. 2020. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecology and Evolution, 10(12): 5759–5784, https://doi.org/10.1002/ece3.6316.

    Article  Google Scholar 

  • Belanger C L, Jablonski D, Roy K, Berke S K, Krug A Z, Valentine J W. 2012. Global environmental predictors of benthic marine biogeographic structure. Proceedings of the National Academy of Sciences of the United States of America, 109(35): 14046–14051, https://doi.org/10.1073/pnas.1212381109.

    Article  Google Scholar 

  • Bosch S, Tyberghein L, Deneudt K, Hernandez F, De Clerck O. 2018. In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Diversity and Distributions, 24(2): 144–157, https://doi.org/10.1111/ddi.12668.

    Article  Google Scholar 

  • Cheung W W L, Lam V W Y, Sarmiento J L, Kearney K, Watson R, Zeller D, Pauly D. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1): 24–35, https://doi.org/10.1111/j.1365-2486.2009.01995.x.

    Article  Google Scholar 

  • Dahlke F T, Wohlrab S, Butzin M, Pörtner H O. 2020. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science, 369(6499): 65–70, https://doi.org/10.1126/science.aaz3658.

    Article  Google Scholar 

  • Dai A Y, Feng Z G, Song Y Z, Huang Z X, Wu H C. 1977. Preliminary investigation of fishery biology of Portunus trituberculatus. Journal of Zoology, 12(2): 30–33, https://doi.org/10.13859/j.cjz.1977.02.015. (in Chinese)

    Google Scholar 

  • Dai C, Wang F, Fang Z H, Dong S L. 2014. Effects of temperature on the respiratory metabolism and activities of related enzymes of swimming crab Portunus trituberculatusenzyme activity in Portunus trituberculatus. Progress in Fishery Sciences, 235(2): 90–96. (in Chinese with English abstract)

    Google Scholar 

  • Doney S C, Ruckelshaus M, Duffy J E, Barry J P, Chan F, English C A, Galindo H M, Grebmeier J M, Hollowed A B, Knowlton N, Polovina J, Rabalais N N, Sydeman W J, Talley L D. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4: 11–37, https://doi.org/10.1146/annurev-marine-041911-111611.

    Article  Google Scholar 

  • Fu S L, Ding M M, Liang Q J, Yang Y J, Chen M, Wei X F, Wang A L, Liao S A, Ye J M. 2019. The key differentially expressed genes and proteins related to immune response in the spleen of pufferfish (Takifugu obscurus) infected by Aeromonas hydrophila. Fish & Shellfish Immunology, 91: 1–11, https://doi.org/10.1016/j.fsi.2019.05.016.

    Article  Google Scholar 

  • Goldsmit J, Archambault P, Chust G, Villarino E, Liu G, Lukovich J V, Barber D V, Howland K L. 2018. Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic. Biological Invasions, 20(2): 501–517, https://doi.org/10.1007/s10530-017-1553-7.

    Article  Google Scholar 

  • Hu Z H, Xu J Z, Shi J G. 2011. Farming modes of swimming crab (Portunus trituberculatus) along the coast of Zhejiang Province. Modern Fisheries Information, 26(3): 3–5. (in Chinese)

    Google Scholar 

  • Jin X S, Cheng J S, Qiu S Y, Li P J, Cui Y, Dong J. 2006. Integrated Research and Evaluation on Fisheries Resources in Yellow Sea and Bohai Sea. Ocean Press, Beijing, China. p.350–357. (in Chinese)

    Google Scholar 

  • Li Z L, Jin X S, Zhang B, Zhou Z P, Shan X J, Dai F Q. 2012. Interannual variations in the population characteristics of the Pacific cod Gadus macrocephalus in the Yellow Sea. Oceanologia et Limnologia Sinica, 43(5): 924–931. (in Chinese)

    Google Scholar 

  • Liao Y Y, Xiao Z P, Yuan Y Y. 2008. Temperature tolerance of larva and juvenile of Portunus trituberculatus. Acta Hydrobiologica Sinica, 32(4): 534–543, https://doi.org/10.3321/j.issn:1000-3207.2008.04.014. (in Chinese with English abstract)

    Article  Google Scholar 

  • Lobo J M Jiménez-Valverde A, Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2): 145–151, https://doi.org/10.1111/j.1466-8238.2007.00358.x.

    Article  Google Scholar 

  • Lu S K, Li R H, Zheng W B, Chen L, Ren Z M, Mu C K, Song W W, Wang C L. 2019. Long-term low-salinity stress affects growth, survival and osmotic related gamma-aminobutyric acid regulation in the swimming crab Portunus trituberculatus. Aquaculture Research, 50(10): 2888–2895, https://doi.org/10.1111/are.14242.

    Article  Google Scholar 

  • Merino G, Barange M, Blanchard J L, Harle J, Holmes R, Allen I, Allison E H, Badjeck M C, Dulvy N K, Holt J, Jennings S, Mullon C, Rodwell L D. 2012. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22(4): 795–806, https://doi.org/10.1016/j.gloenvcha.2012.03.003.

    Article  Google Scholar 

  • Morley J J, Heusser L E. 1997. Role of orbital forcing in East Asian monsoon climates during the last 350 kyr: evidence from terrestrial and marine climate proxies from core RC14–99. Geochemistry, Geophysics, Geosystems, 12(3): 483–493, https://doi.org/10.1029/97PA00213.

    Google Scholar 

  • Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, van Vuuren D P, Carter T R, Emori S, Kainuma M, Kram T, Meehl G A, Mitchell J F B, Nakicenovic N, Riahi K, Smith S J, Stouffer R J, Thomson A M, Weyant J P, Wilbanks T J. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756.

    Article  Google Scholar 

  • Poloczanska E S, Burrows M T, Brown C J, García Molinos J, Halpern B S, Hoegh-Guldberg O, Kappel C V, Moore P J, Richardson A J, Schoeman D S, Sydeman W J. 2016. Responses of marine organisms to climate change across oceans. Frontiers in Marine Science, 3: 62, https://doi.org/10.3389/fmars.2016.00062.

    Article  Google Scholar 

  • Ren X Y, Yu X, Gao B Q, Li J, Liu P. 2017. iTRAQ-based identification of differentially expressed proteins related to growth in the swimming crab, Portunus trituberculatus. Aquaculture Research, 48(6): 3257–3267, https://doi.org/10.1111/are.13155.

    Article  Google Scholar 

  • Rilov G. 2016. Multi-species collapses at the warm edge of a warming sea. Scientific Reports, 6: 36897, https://doi.org/10.1038/srep36897.

    Article  Google Scholar 

  • Silva C, Leiva F, Lastra J. 2019. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile. Fisheries Oceanography, 28(2): 171–182, https://doi.org/10.1111/fog.12400.

    Article  Google Scholar 

  • Su X P, Liu J J, Wang F, Wang Q H, Zhang D, Zhu B S, Liu D P. 2020. Effect of temperature on agonistic behavior and energy metabolism of the swimming crab (Portunus trituberculatus). Aquaculture, 516: 734573, https://doi.org/10.1016/j.aquaculture.2019.734573.

    Article  Google Scholar 

  • Swets J A. 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285–1293.

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R. 2014. Biomod2: ensemble platform for species distribution modelling. R package version 3.3–7.1.

  • Thuiller W. 2003. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10): 1353–1362, https://doi.org/10.1046/j.1365-2486.2003.00666.x.

    Article  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography, 21(2): 272–281, https://doi.org/10.1111/j.1466-8238.2011.00656.x.

    Article  Google Scholar 

  • Xue J L, Fan W, Tang F H, Guo G G, Tang W, Zhang S M. 2018. Analysis of potential habitat distribution of Scomber japonicus in northwest Pacific Ocean using maximum entropy model. South China Fisheries Science, 14(1): 92–98, https://doi.org/10.3969/j.issn.2095-0780.2018.01.012. (in Chinese with English abstract)

    Google Scholar 

  • Yáñez E, Hormazábal S, Silva C, Montecinos A, Barbieri M A, Valdenegro A, Órdenes A, Gómez F. 2008. Coupling between the environment and the pelagic resources exploited off Northern Chile: ecosystem indicators and a conceptual model. Latin American Journal of Aquatic Research, 36(2): 159–181, https://doi.org/10.3856/vol36-issue2-fulltext-3.

    Article  Google Scholar 

  • Zhang C C, Wei H, Song G S, Xie C. 2020. IPCC-CMIP5 Based projection and analysis of future sea surface temperature changes in coastal Seas East of China. Oceanologia et Limnologia Sinica, 51(6): 1288–1300. (in Chinese with English abstract)

    Google Scholar 

  • Zhang L, Liu S, Sun P S, Wang T L. 2011. Segmentation and mapping of uncertain components in the simulation of the impact of climate change on species distribution: a case study of Pinus tabulaeformis. Acta Ecologica Sinica, 19: 5749–5761. (in Chinese)

    Google Scholar 

  • Zhang Z X, Xu S Y, Capinha C, Weterings R, Gao T X. 2019. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators, 104: 333–340, https://doi.org/10.1016/j.ecolind.2019.05.023.

    Article  Google Scholar 

  • Zhao Z F, Wei H Y, Guo Y L, Gu W. 2016. Potential distribution of Panax ginseng and its predicted responses to climate change. Chinese Journal of Applied Ecology, 27(11): 3607–3615. (in Chinese with English abstract)

    Google Scholar 

  • Zhu N. 2019. Simulation of suitable habitat distribution of Magnolia officinalis based on Ensemble Model. Journal of Sichuan Agricultural University, 37(04): 481–489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Han.

Additional information

Supported by the National Key Research and Development Program of China (Nos. 2017YFA0604902, 2017YFA0604904), the Zhejiang Provincial Natural Science Foundation of China (No. LR21D060003), the New Talent Program for College Students in Zhejiang Province (No. 2016R411011), and the Innovation Training Program for University students of Zhejiang Ocean University (No. 2020-03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Han, X. & Han, Z. Effects of climate change on the potential habitat distribution of swimming crab Portunus trituberculatus under the species distribution model. J. Ocean. Limnol. 40, 1556–1565 (2022). https://doi.org/10.1007/s00343-021-1082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1082-1

Keyword

Navigation