Skip to main content

Advertisement

Log in

Distribution and phenogenetic diversity of Synechococcus in the Bohai Sea, China

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Synechococcus is one of the most abundant picocyanobacteria in marine ecosystem, and the absence of Prochlorococcus would make it indispensable as a primary producer in the Bohai Sea, North China. However, the abundance distribution and genetic diversity of Synechococcus in this region have rarely been reported. In this study, the distribution pattern of Synechococcus abundance was investigated during four cruises in April, June, August, and November from 2018 to 2019, moreover, its phenogenetic diversity was studied based on high-throughput sequencing of the cpeBA operon. The results demonstrate that phycoerythrin-containing Synechococcus was most abundant in August when temperature was high and oxygen saturation was low. During this period, Synechococcus pigment type (PT) 2 was abundant in the Bohai Bay and Laizhou Bay under conditions of high nutrient concentration, temperature, and turbidity. In comparison, PT3, especially those clusters characterized with high or variable ratio of phycourobilin and phycoerythrobilin, was predominant in the Bohai Strait and Liaodong Bay under conditions of high salinity, pH, and oxygen saturation. Furthermore, co-occurrence correlations using network analysis revealed that Synechococcus PTs were related to 15.37%–43.48% of the prokaryotic genera. Synechococcus PT3c/PT3d and PT2 were the most important PTs in the network. The hierarchical clustering revealed that taxa co-occurred with Synechococcus PTs differed among samples. It could be attributed to the substance exchange and the environmental impact, which calls for more studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The sequence data of this study were deposited in the sequence read archive of NCBI (US National Center for Biotechnology Information; https://www.ncbi.nlm.nih.gov/). A bio-project associated with this study was applied for and processed in NCBI with the accession number PRJNA 688318. All raw sequencing data were stored under this accession number.

References

  • Bastian M, Heymann S, Jacomy M. 2009. Gephi: an open source software for exploring and manipulating networks. In: International AAAI Conference on weblogs and social media: San Jose, California, https://gephi.org/publications/gephi-bastian-feb09.pdf.

  • Bertilsson S, Berglund O, Karl D M, Chisholm S W. 2003. Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnology and Oceanography, 48(5): 1721–1731.

    Article  Google Scholar 

  • Bokulich N A, Subramanian S, Faith J J, Gevers D, Gordon J I, Knight R, Mills D A, Caporaso J G. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1): 57–59.

    Article  Google Scholar 

  • Brown J, Pirrung M, McCue L A. 2017. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33(19): 3137–3139.

    Article  Google Scholar 

  • Chen F, Wang K, Kan J J, Bachoon D S, Lu J R, Lau S, Campbell L. 2004. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by Ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences. Aquatic Microbial Ecology, 36(2): 153–164.

    Article  Google Scholar 

  • Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. 2014. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(4): S11.

    Article  Google Scholar 

  • Christie-Oleza J A, Scanlan D J, Armengaud J. 2015. “You produce while I clean up”, a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions. Proteomics, 15(20): 3454–3462.

    Article  Google Scholar 

  • Christie-Oleza J A, Sousoni D, Lloyd M, Armengaud J, Scanlan D J. 2017. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nature Microbiology, 2(9): 17100.

    Article  Google Scholar 

  • Chung C C, Gong G C, Huang C Y, Lin J Y, Lin Y C. 2015. Changes in the Synechococcus assemblage composition at the surface of the East China Sea due to flooding of the Changjiang River. Microbial Ecology, 70(3): 677–688.

    Article  Google Scholar 

  • Cuevas L A, Morales C E. 2006. Nanoheterotroph grazing on bacteria and cyanobacteria in oxic and suboxic waters in coastal upwelling areas off northern Chile. Journal of Plankton Research, 28(4): 385–397.

    Article  Google Scholar 

  • Dafner E V. 2015. Segmented continuous-flow analyses of nutrient in seawater: intralaboratory comparison of Technicon AutoAnalyzer II and Bran+ Luebbe Continuous Flow AutoAnalyzer III. Limnology and Oceanography: Methods, 13(10): 511–520.

    Google Scholar 

  • del Carmen Muñoz-Marín M, Gómez-Baena G, Díez J, Beynon R J, González-Ballester D, Zubkov M V, García-Fernández J M. 2017. Glucose uptake in Prochlorococcus: diversity of kinetics and effects on the metabolism. Frontiers in Microbiology, 8: 327.

    Google Scholar 

  • Dvořák P, Casamatta D A, Poulíčková A, Hašler P, Ondřej V, Sanges R. 2014. Synechococcus: 3 billion years of global dominance. Molecular Ecology, 23(22): 5538–5551.

    Article  Google Scholar 

  • Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2194–2200.

    Article  Google Scholar 

  • Everroad R C, Wood A M. 2006. Comparative molecular evolution of newly discovered picocyanobacterial strains reveals a phylogenetically informative variable region of β-phycoerythrin. Journal of Phycology, 42(6): 1300–1311.

    Article  Google Scholar 

  • Everroad R C, Wood A M. 2012. Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria. Molecular Phylogenetics and Evolution, 64(3): 381–392.

    Article  Google Scholar 

  • Flombaum P, Gallegos J L, Gordillo R A, Rincón J, Zabala L L, Jiao N Z, Karl D M, Li W K W, Lomas M W, Veneziano D, Vera C S, Vrugt J A, Martiny A C. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110(24): 9824–9829.

    Article  Google Scholar 

  • Fox J, Weisberg S. 2019. An R Companion to Applied Regression. 3rd edn. SAGE Publications, Thousand Oaks, CA, USA.

    Google Scholar 

  • Grébert T, Doré H, Partensky F, Farrant G K, Boss E S, Picheral M, Guidi L, Pesant S, Scanlan D J, Wincker P, Acinas S G, Kehoe D M, Garczarek L. 2018. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 115(9): E2010–E2019.

    Google Scholar 

  • Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J R, Coelho L P, Espinoza J C I, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S, Coordinators T O C, Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas S G, Bork P, de Vargas C, Iudicone D, Sullivan M B, Raes J, Karsenti E, Bowler C, Gorsky G. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532(7600): 465–470.

    Article  Google Scholar 

  • Haaber J, Middelboe M. 2009. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling. The ISME Journal, 3(4): 430–441.

    Article  Google Scholar 

  • Haverkamp T H A, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal L J. 2009. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. The ISME Journal, 3(4): 397–408.

    Article  Google Scholar 

  • Herdman H, Castenholz R W, Waterbury J B, Rippka R. 2001. Form-genus XIII. Synechococcus. In: Boone D R and Castenholz R W ed. Bergey’s Manual of Systematic Bacteriology. Springer, Dordrecht. p.508–512.

    Google Scholar 

  • Hunter-Cevera K R, Post A F, Peacock E E, Sosik H M. 2016. Diversity of Synechococcus at the Martha’s Vineyard coastal observatory: insights from culture isolations, clone libraries, and flow cytometry. Microbial Ecology, 71(2): 276–289.

    Article  Google Scholar 

  • Ihaka R, Gentleman R. 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3): 299–314.

    Google Scholar 

  • Johnson Z I, Zinser E R, Coe A, Mcnulty N P, Woodward E M S, Chisholm S W. 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science, 311(5768): 1737–1740.

    Article  Google Scholar 

  • Kent A G, Baer S E, Mouginot C, Huang J S, Larkin A A, Lomas M W, Martiny A C. 2019. Parallel phylogeography of Prochlorococcus and Synechococcus. The ISME Journal, 13(2): 430–441.

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M. 1994. MEGA: molecular evolutionary genetics analysis software for microcomputers. Bioinformatics, 10(2): 189–191.

    Article  Google Scholar 

  • Larsson J, Celepli N, Ininbergs K, Dupont C L, Yooseph S, Bergman B, Ekman M. 2014. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. The ISME Journal, 8(9): 1892–1903.

    Article  Google Scholar 

  • Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47(W1): W256–W259.

    Article  Google Scholar 

  • Li H B, Xiao T, Ding T, Lü R H. 2006. Effect of the Yellow Sea Cold Water Mass (YSCWM) on distribution of bacterioplankton. Acta Ecologica Sinica, 26(4): 1012–1019.

    Article  Google Scholar 

  • Li J J, Chen Z Z, Jing Z Y, Zhou L B, Li G, Ke Z X, Jiang X, Liu J X, Liu H X, Tan Y H. 2019a. Synechococcus bloom in the Pearl River Estuary and adjacent coastal area—with special focus on flooding during wet seasons. Science of the Total Environment, 692: 769–783.

    Article  Google Scholar 

  • Li J L, Wang T, Yu S X, Bai J, Qin S. 2019b. Community characteristics and ecological roles of bacterial biofilms associated with various algal settlements on coastal reefs. Journal of Environmental Management, 250: 109459.

    Article  Google Scholar 

  • Li W K W. 1998. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnology and Oceanography, 43(7): 1746–1753.

    Article  Google Scholar 

  • Louca S, Parfrey L W, Doebeli M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305): 1272–1277.

    Article  Google Scholar 

  • Lü D W, Zheng B, Fang Y, Shen G, Liu H J. 2015. Distribution and pollution assessment of trace metals in seawater and sediment in Laizhou Bay. Chinese Journal of Oceanology and Limnology, 33(4): 1053–1061.

    Article  Google Scholar 

  • Martiny A C, Treseder K, Pusch G. 2013. Phylogenetic conservatism of functional traits in microorganisms. The ISME Journal, 7(4): 830–838.

    Article  Google Scholar 

  • McCarren J, Becker J W, Repeta D J, Shi Y M, Young C R, Malmstrom R R, Chisholm S W, DeLong E F. 2010. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proceedings of the National Academy of Sciences of the United States of America, 107(38): 16420–16427.

    Article  Google Scholar 

  • Middelboe M, Riemann L, Steward G F, Hansen V, Nybroe O. 2003. Virus-induced transfer of organic carbon between marine bacteria in a model community. Aquatic Microbial Ecology, 33(1): 1–10.

    Article  Google Scholar 

  • Moore L R, Post A F, Rocap G, Chisholm S W. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography, 47(4): 989–996.

    Article  Google Scholar 

  • Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara R B, Simpson GL, Solymos P, Stevens M H H, Szoecs E, Wagner H. 2019. Vegan: communityecology package project, https://CRAN.R-project.org/package=vegan

  • Olson R J, Chisholm S W, Zettler E R, Armbrust E V. 1988. Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep Sea Research Part A. Oceanographic Research Papers, 35(3): 425–440.

    Article  Google Scholar 

  • Paerl H W. 1991. Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton. Applied and Environmental Microbiology, 57(2): 473–479.

    Article  Google Scholar 

  • Partensky F, Blanchot J, Vaulot D. 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin de l’Institut Océanographique (Monaco), 19: 457–476.

    Google Scholar 

  • Ruiz-González C, Simó R, Vila-Costa M, Sommaruga R, Gasol J M. 2012. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake. The ISME Journal, 6(3): 650–659.

    Article  Google Scholar 

  • Saito M A, Moffett J W, Chisholm S W, Waterbury J B. 2002. Cobalt limitation and uptake in Prochlorococcus. Limnology and Oceanography, 47(6): 1629–1636.

    Article  Google Scholar 

  • Saito M A, Rocap G, Moffett J W. 2005. Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnology and Oceanography, 50(1): 279–290.

    Article  Google Scholar 

  • Scanlan D J. 2012. Marine picocyanobacteria. In: Whitton B A ed. Ecology of Cyanobacteria II. Springer, Dordrecht. p.503–533.

    Chapter  Google Scholar 

  • Schlitzer R. 2002. Interactive analysis and visualization of geoscience data with Ocean Data View. Computers & Geosciences, 28(10): 1211–1218.

    Article  Google Scholar 

  • Tai V, Paulsen I T, Phillippy K, Johnson D A, Palenik B. 2009. Whole-genome microarray analyses of Synechococcus-Vibrio interactions. Environmental Microbiology, 11(10): 2698–2709.

    Article  Google Scholar 

  • Talmy D, Beckett S J, Zhang A B, Taniguchi D A A, Weitz J S, Follows M J. 2019. Contrasting controls on microzooplankton grazing and viral infection of microbial prey. Frontiers in Marine Science, 6: 182.

    Article  Google Scholar 

  • van den Engh G J, Doggett J K, Thompson A W, Doblin M A, Gimpel C N G, Karl D M. 2017. Dynamics of Prochlorococcus and Synechococcus at station ALOHA revealed through flow cytometry and high-resolution vertical sampling. Frontiers in Marine Science, 4: 359.

    Article  Google Scholar 

  • Walters W, Hyde E R, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert J A, Jansson J K, Caporaso J G, Fuhrman JA, Apprill A, Knight R. 2016. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems, 1(1): e00009–15.

    Article  Google Scholar 

  • Wei H, Sun J, Moll A, Zhao L. 2004. Phytoplankton dynamics in the Bohai Sea—observations and modelling. Journal of Marine Systems, 44(3–4): 233–251.

    Article  Google Scholar 

  • Wood A M, Phinney D A, Yentsch C S. 1998. Water column transparency and the distribution of spectrally distinct forms of phycoerythrin-containing organisms. Marine Ecology Progress Series, 162: 25–31.

    Article  Google Scholar 

  • Xia X M, Liu H B, Choi D, Noh J H. 2018. Variation of Synechococcus pigment genetic diversity along two turbidity gradients in the China Seas. Microbial Ecology, 75(1): 10–21.

    Article  Google Scholar 

  • Yan G W, Jiang T, Zhang Y Y, Cui Z G, Qu K M, Zheng Y Y, Lu L, Li Y. 2020. Determining temporal and spatial distribution of autotrophic picoplankton community composition through HPLC-pigment method and flow cytometry in the central Bohai Sea (China). Marine Pollution Bulletin, 157: 111261.

    Article  Google Scholar 

  • Zhang G G, Huang J, Jia M Q, Liu F H, Yang Y H, Wang Z W, Han G D. 2019. Ammonia-oxidizing bacteria and archaea: response to simulated climate warming and nitrogen supplementation. Soil Science Society of America Journal, 83(6): 1683–1695.

    Article  Google Scholar 

  • Zhang Y, Lu X Q, Liu H L, Liu Q Q, Yu D. 2015. Identifying the sources of organic matter in marine and riverine sediments of Bohai Bay and its catchment using carbon and nitrogen stable isotopes. Chinese Journal of Oceanology and Limnology, 33(1): 204–209.

    Article  Google Scholar 

  • Zhao Y, Yu R C, Kong F Z, Wei C J, Liu Z, Geng H X, Dai L, Zhou Z X, Zhang Q C, Zhou M J. 2019. Distribution patterns of picosized and nanosized phytoplankton assemblages in the East China Sea and the Yellow Sea: implications on the impacts of kuroshio intrusion. Journal of Geophysical Research: Oceans, 124(2): 1262–1276.

    Article  Google Scholar 

  • Zhao Y, Zhao L, Xiao T, Liu C G, Sun J, Zhou F, Liu S M, Huang L F. 2013. Temporal variation of picoplankton in the spring bloom of Yellow Sea, China. Deep Sea Research Part II: Topical Studies in Oceanography, 97: 72–84.

    Article  Google Scholar 

  • Zhao Y, Zhao L, Zhang W C, Sun J, Huang L F, Li J, Zhai H C, Liu S M, Xiao T. 2016. Variations of picoplankton abundances during blooms in the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 124: 100–108.

    Article  Google Scholar 

  • Zheng Q, Lin W X, Wang Y, Li Y Y, He C, Shen Y, Guo W D, Shi Q, Jiao N Z. 2021. Highly enriched N-containing organic molecules of Synechococcus lysates and their rapid transformation by heterotrophic bacteria. Limnology and Oceanography, 66(2): 335–348.

    Article  Google Scholar 

  • Zheng Q, Wang Y, Lu J Y, Lin W X, Chen F, Jiao N Z. 2020. Metagenomic and metaproteomic insights into photoautotrophic and heterotrophic interactions in a Synechococcus culture. mBio, 11(1): e03261–19.

    Article  Google Scholar 

  • Zheng Q, Wang Y, Xie R, Lang A S, Liu Y T, Lu J Y, Zhang X D, Sun J, Suttle C A, Jiao N Z. 2018. Dynamics of heterotrophic bacterial assemblages within Synechococcus cultures. Applied and Environmental Microbiology, 84(3): e01517–17.

    Article  Google Scholar 

Download references

Acknowledgment

The samples were collected by R/V Chuangxin I. We acknowledge the assistance from the Engineering and Technical Service, Institute of Oceanology, Chinese Academy of Sciences, for organizing research voyages and sharing open data. We extend our gratitude to the journal reviewers for their comments and suggestions, which helped in significantly improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialin Li.

Additional information

Supported by the Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese Academy of Sciences (No. COMS2020Q09), the National Key Research and Development Program of China (No. 2018YFD0901102), and the Science and Technology program of Yantai (No. 2017ZH095)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chen, X., Li, J. et al. Distribution and phenogenetic diversity of Synechococcus in the Bohai Sea, China. J. Ocean. Limnol. 40, 592–604 (2022). https://doi.org/10.1007/s00343-021-1005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1005-1

Keyword

Navigation