Skip to main content
Log in

Detrital zircon U-Pb age perspective on the sediment provenance and its geological significance of sandstones in the Lamandau region, SW Borneo, Indonesia

  • Geology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The Southwest Borneo (SW Borneo) block belongs to Sundaland and is the oldest continental fragment of Borneo that is believed to derive from the Gondwana land. The U-Pb isotopic dating ages of 113 detrital zircons from sandstones of the Ketapang Complex in SW Borneo range from 3 298 Ma to 78 Ma, and show six major age populations: 2 476–2 344 Ma, 2 016–1 831 Ma, 1 296–759 Ma, 455–406 Ma, 262–210 Ma, and 187–78 Ma. The youngest age of these detrital zircons is 78 Ma, indicating that the maximum depositional age of the sandstones is Campanian. Permian-Late Cretaceous detrital zircons are interpreted as having been derived from the nearby Schwaner Mountains and the Permian-Triassic tin belt granitoids in Southeast Asia (SE Asia). Archean-Carboniferous detrital zircons have a continental Gondwana provenance, with their age spectra similar to those of northwestern Australia, indicating that these zircons could be derived from the orogenic belts and cratons in northwestern and central Australia. The provenance of these detrital zircons in this study indicates the SW Borneo block was located on the northwestern margin of Australia during the Paleozoic, in the region of the Banda Embayment. SW Borneo rifted from Australia and moved northward in the Early Jurassic, and this block was added to Sundaland in the Early Cretaceous. The Luconia-Dangerous Grounds continental fragment derived from East Asia collided with SW Borneo after subduction in the Cretaceous, which induced the widespread magmatism in the Schwaner Mountains in SW Borneo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Belousova E A, Griffin W L, O’Reilly S Y, Fisher N. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602–622.

    Article  Google Scholar 

  • Black L P, Kamo S L, Williams I S, Mundil R, Davis D W, Korsch R J, Foudoulis C. 2003. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chemical Geology, 200(1–2): 171–188.

    Article  Google Scholar 

  • Bodet F, Schärer U. 2000. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochimica et Cosmochimica Acta, 64(12): 2067–2091.

    Article  Google Scholar 

  • Breitfeld H T, Davies L, Hall R, Armstrong R, Forster M, Lister G, Thirlwall M, Grassineau N, Hennig-Breitfeld J, van Hattum M W A. 2020. Mesozoic Paleo-Pacific subduction beneath SW Borneo: U-Pb geochronology of the Schwaner granitoids and the Pinoh Metamorphic Group. Frontiers in Earth Science, 8: 568715.

    Article  Google Scholar 

  • Breitfeld H T, Hall R, Galin T, BouDagher-Fadel M K. 2018. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo. Journal of Asian Earth Sciences, 160: 200–223.

    Article  Google Scholar 

  • Breitfeld H T, Hall R, Galin T, Forster M A, BouDagher-Fadel M K. 2017. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics, 694: 35–56.

    Article  Google Scholar 

  • Buick I S, Storkey A, Williams I S. 2008. Timing relationships between pegmatite emplacement, metamorphism and deformation during the intra-plate Alice Springs Orogeny, central Australia. Journal of Metamorphic Geology, 26(9): 915–936.

    Article  Google Scholar 

  • Camacho A, Hensen B J, Armstrong R. 2002. Isotopic test of a thermally driven intraplate orogenic model, Australia. Geology, 30(10): 887–890.

    Article  Google Scholar 

  • Cawood P A, Nemchin A A. 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134(3–4): 209–234.

    Article  Google Scholar 

  • Claoué-Long J C, Hoatson D M. 2005. Proterozoic mafic-ultramafic intrusions in the Arunta Region, central Australia: part 2: event chronology and regional correlations. Precambrian Research, 142(3–4): 134–158.

    Article  Google Scholar 

  • Clements B, Sevastjanova I, Hall R, Belousova E A, Griffin W L, Pearson N. 2012. Detrital zircon U-Pb age and Hf-isotope perspective on sediment provenance and tectonic models in SE Asia. In: Rasbury E T, Hemming S R, Riggs N R eds. Mineralogical and geochemical approaches to Provenance. Geological Society of America Special Paper. p.37–61.

  • Cross A J, Claoué-Long J C, Crispe A J. 2003. Summary of Results. Joint NTGS-GA geochronology project: Tanami Region 2001–2002. Northern Territory Geological Survey, Record 2003–006, Darwin, Australia. p.1–35.

  • Davies L, Hall R, Armstrong R. 2014. Cretaceous crust in SW Borneo: Petrological, geochemical and geochronological constraints from the Schwaner mountains. In: The 38th Annual Convention & Exhibition, Proceedings. Indonesian Petroleum Association. p.1–15.

  • De Keyser F, Rustandi E. 1993. Geology of the Ketapang sheet area, Kalimantan. Map at 1: 250, 000 scale. Bandung, Indonesia: Geological Research and Development Centre.

    Google Scholar 

  • Fedo C M, Sircombe K N, Rainbird R H. 2003. Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1): 277–303.

    Article  Google Scholar 

  • Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L, Cheadle M J, Hanghøj K, Schwartz J J. 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology, 35(7): 643–646.

    Article  Google Scholar 

  • Haines P W, Hand M, Sandiford M. 2001. Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens. Australian Journal of Earth Sciences, 48(6): 911–928.

    Article  Google Scholar 

  • Hall R, Clements B, Smyth H R. 2009. Sundaland: basement character, structure and plate tectonic development. In: Proceedings Indonesian Petroleum Association, 33rd Annual Convention.

  • Hall R, Sevastjanova I. 2012. Australian crust in Indonesia. Australian Journal of Earth Sciences, 59(6): 827–844.

    Article  Google Scholar 

  • Hall R. 2009. Indonesia, geology. In: Gillespie R, Clague D eds. Encyclopedia of Islands. University of California Press, Berkeley, California, America. p.454–460.

    Google Scholar 

  • Hall R. 2011. Australia-SE Asia collision: plate tectonics and crustal flow. In: Hall R, Cottam M A, Wilson M E J eds. The SE Asian gateway: history and tectonics of Australia-Asia collision. Geological Society London Special Publication. p.75–109.

  • Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571: 1–41.

    Article  Google Scholar 

  • Hall R. 2017. Southeast Asia: new views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45: 331–358.

    Article  Google Scholar 

  • Harjanto A, Sutarto, Kurniawan P P A. 2019. Geology and the effect of boulder size concretion to bauxite laterite deposit quality at Djanra area, Sandai District, Ketapang Regency, West Kalimantan. Journal Techno, 5(1): 1–14.

    Google Scholar 

  • Hennig J, Breitfeld H T, Hall R, Nugraha A M S. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48: 292–310.

    Article  Google Scholar 

  • Hu Z C, Zhang W, Liu Y S, Gao S, Li M, Zong K Q, Chen H H, Hu S H. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis. Analytical Chemistry, 87(2): 1152–1157.

    Article  Google Scholar 

  • Hutchison C S. 2005. Geology of North-West Borneo. Elsevier Science, London. 444p.

    Google Scholar 

  • Idrus A, Setijadji L D, Tamba F, Anggara F. 2011. Geology and characteristics of Pb-Zn-Cu-Ag skarn deposit at Ruwai, Lamandau Regency, Central Kalimantan. Journal of Applied Geology, 3(1): 54–63.

    Google Scholar 

  • Kemp A I S, Hawkesworth C J, Paterson B A, Foster G L, Kinny P D, Whitehouse M J, Maas R, EIMF. 2008. Exploring the plutonic-volcanic link: a zircon U-Pb, Lu-Hf and O isotope study of paired volcanic and granitic units from southeastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 97(4): 337–355.

    Article  Google Scholar 

  • Khan A A. 2018. An appraisal of the tectonic evolution of SW Borneo constraints from petrotectonic assemblage and gravity anomaly. Bulletin of the Geological Society of Malaysia, 66: 47–56.

    Article  Google Scholar 

  • Kueter N, Soesilo J, Fedortchouk Y, Nestola F, Belluco L, Troch J, Wälle M, Guillong M, Von Quadt A, Driesner T. 2016. Tracing the depositional history of Kalimantan diamonds by zircon provenance and diamond morphology studies. Lithos, 265: 159–176.

    Article  Google Scholar 

  • Lewis C J, Sircombe K. 2013. Use of U-Pb geochronology to delineate provenance of North West Shelf sediments, Australia. In: Keep M, Moss S J eds. The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium. Perth, Australia. p.1–27.

  • Li S, Yang X Y, Sun W D. 2015. The Lamandau IOCG deposit, southwestern Kalimantan Island, Indonesia: evidence for its formation from geochronology, mineralogy, and petrogenesis of igneous host rocks. Ore Geology Reviews, 68: 43–58.

    Article  Google Scholar 

  • Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1–2): 34–43.

    Article  Google Scholar 

  • Ludwig K R. 2003. User’s Manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley: Geochronology Center, 4: 1–70.

    Google Scholar 

  • Lyons P, Huston D L. 2006. Geology and geochronology of the Palaeoproterozoic Pine Creek Orogen. In: Lyons P, Huston D L eds. Evolution and metallogenesis of the North Australian Craton, Conference Abstracts. Geoscience Australia Record 2006/16, Canberra, Australia. p.53–57.

  • Maidment D W, Williams I S, Hand M. 2007. Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Research, 19(3): 355–360.

    Article  Google Scholar 

  • Metcalfe I. 1996. Pre-Cretaceous evolution of SE Asian terranes. In: Hall R, Blundell D eds. Tectonic Evolution of SE Asia. Geological Society, London, p.97–122.

    Google Scholar 

  • Metcalfe I. 2009. Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia. In: Hall R, Cottam M A, Wilson M E J eds. Late Palaeozoic and Mesozoic Ecosystems in SE Asia. Geological Society, London. p.7–23.

    Google Scholar 

  • Metcalfe I. 2011a. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1): 3–21.

    Article  Google Scholar 

  • Metcalfe I. 2011b. Palaeozoic-Mesozoic history of SE Asia. In: Hall R, Cottam M A, Wilson M E J eds. The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. Geological Society, London. p.7–35.

    Google Scholar 

  • Metcalfe I. 2013a. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33.

    Article  Google Scholar 

  • Metcalfe I. 2013b. Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences, 76: 195–213.

    Article  Google Scholar 

  • Morley C K. 2012. Late Cretaceous-Early Palaeogene tectonic development of SE Asia. Earth-Science Reviews, 115(1–2): 37–75.

    Article  Google Scholar 

  • Müller R D, Gaina C, Roest W R, Hansen D L. 2001. A recipe for microcontinent formation. Geology, 29(3): 203–206.

    Article  Google Scholar 

  • Neumann N L, Fraser G L. 2007. Geochronological synthesis and Time-Space plots for Proterozoic Australia. In: Neumann N L, Fraser G L eds. Geoscience Australia Record 2007/06. Canberra, Australia. 216p.

  • Pell S D, Williams I S, Chivas A R. 1997. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands. Sedimentary Geology, 109(3–4): 233–260.

    Article  Google Scholar 

  • Schwartz M O, Rajah S S, Askury A K, Putthapiban P, Djaswadi S. 1995. The Southeast Asian tin belt. Earth-Science Reviews, 38(2–4): 95–293.

    Article  Google Scholar 

  • Setiawan N I, Osanai Y, Nakano N, Adachi T, Setiadji L D, Wahyudiono J. 2013. Late Triassic metatonalite from the Schwaner Mountains in West Kalimantan and its contribution to sedimentary provenance in the Sundaland. Berita Sedimentologi, 12(28): 4–12.

    Google Scholar 

  • Sevastjanova I, Clements B, Hall R, Belousova E A, Griffin W L, Pearson N. 2011. Granitic magmatism, basement ages, and provenance indicators in the Malay peninsula: insights from detrital zircon U-Pb and Hf-isotope data. Gondwana Research, 19(4): 1024–1039.

    Article  Google Scholar 

  • Sevastjanova I, Hall R, Rittner M, Paw S M T L, Naing T T, Alderton D H, Comfort G. 2016. Myanmar and Asia united, Australia left behind long ago. Gondwana Research, 32: 24–40.

    Article  Google Scholar 

  • Simbolon D R, Dana C D P, Whitehouse L E. 2019. Metallogenic model of the Ruwai Fe-Zn-Pb-Ag skarn deposit, Central Kalimantan: understanding the complexity from proximal to distal base metal mineralization. In: Proceedings MGEI Unlocking Concealed and Complex Deposits. p.115–122.

  • Sircombe K N, Freeman M J. 1999. Provenance of detrital zircons on the Western Australia coastline—implications for the geologic history of the Perth basin and denudation of the Yilgarn craton. Geology, 27(10): 879–882.

    Article  Google Scholar 

  • Smith C B, Bulanova G P, Kohn S C, Milledge H J, Hall A E, Griffin B J, Pearson D G. 2009. Nature and genesis of Kalimantan diamonds. Lithos, 112(2): 822–832.

    Article  Google Scholar 

  • Smyth H R, Hall R, Nichlos G J. 2008. Early Cenozoic volcanic arc history of East Java, Indonesia: the stratigraphic record of eruptions on a continental margin in a tropical setting. In: Draut A E, Clift P D, Scholl D W eds. Formation and Applications of the Sedimentary Record in Arc Collision Zones. Geological Society of America Special Paper, 436: 199–222.

  • Song Z J, Liu W C, Zhang H Y, Liu C F, Luo K, Wu C. 2019. Detrital zircon geochronology and its geological significance of Upper Permian sandstones in Yushigou area of western Qilian Mountains, China. Geoscience, 33(1): 112–120. (in Chinese with English abstract)

    Google Scholar 

  • Sun S J, Ireland T R, Zhang L P, Zhang R Q, Zhang C C, Sun W D. 2018. Palaeoarchaean materials in the Tibetan Plateau indicated by zircon. International Geology Review, 60(8): 1061–1072.

    Article  Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J eds. Magmatism in the Ocean Basins. Geological Society Special Publication. p.313–345.

  • Tate R B. 2002. Geological Map of Borneo. Geological Society of Malaysia: Scale 1: 1, 500, 000, One Sheet.

  • Taylor W R, Jaques A L, Ridd M. 1990. Nitrogen-defect aggregation characteristics of some Australasian diamonds: time-temperature constraints on the source regions of pipe and alluvial diamonds. American Mineralogist, 75: 1290–1310.

    Google Scholar 

  • van Bemmelen R W. 1939. De geologie van het westelijke en Zuidelijk deel van de Westerafdeeling van Borneo. Dienst Mijnbouw Nederlandsch Indië, 68: 187–238.

    Google Scholar 

  • van Emmichoven C P A Z. 1939. De geologie van het centrale en oostelijke deel van de Westerafdeeling van Borneo. Jaarboek Mijnwezen Nederlandsch Oost Indië, Verhandelingen, 68: 7–186.

    Google Scholar 

  • van Hattum M W A, Hall R, Pickard A L, Nichols G J. 2006. Southeast Asian sediments not from Asia: provenance and geochronology of north Borneo sandstones. Geology, 34(7): 589–592.

    Article  Google Scholar 

  • Veevers J J, Saeed A, Belousova E A, Griffin W L. 2005. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Science Reviews, 68(3–4): 245–279.

    Article  Google Scholar 

  • Weltje G J, von Eynatten H. 2004. Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171(1–4): 1–11.

    Article  Google Scholar 

  • White L T, Graham I, Tanner D, Hall R, Armstrong R A, Yaxley G, Barron L, Spencer L, van Leeuwen T M. 2016. The provenance of Borneo’s enigmatic alluvial diamonds: a case study from Cempaka, SE Kalimantan. Gondwana Research, 38: 251–272.

    Article  Google Scholar 

  • Wu L, Jia D, Li H B, Deng F, Li Y Q. 2010. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity. Geological Magazine, 147(6): 974–980.

    Article  Google Scholar 

  • Wu Y B, Zheng Y F. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554–1569.

    Article  Google Scholar 

  • Xiong C, Chen H D, Niu Y L, Chen A Q, Zhang C G, Li F, Xu S L, Yang S. 2019. Provenance, depositional setting, and crustal evolution of the Cathaysia Block, South China: Insights from detrital zircon U-Pb geochronology and geochemistry of clastic rocks. Geological Journal, 54(2): 897–912.

    Article  Google Scholar 

  • Yang J H, Zhou M F, Hu R Z, Zhong H, Williams-Jones A E, Liu L, Zhang X C, Fu Y Z, Mao W. 2020. Granite-related tin metallogenic events and key controlling factors in Peninsular Malaysia, Southeast Asia: new insights from cassiterite U-Pb dating and zircon geochemistry. Economic Geology, 115(3): 581–601.

    Article  Google Scholar 

  • Yao J L, Shu L S, Santosh M. 2011a. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry-new clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research, 20(2–3): 553–567.

    Article  Google Scholar 

  • Yao Z Y, Yang X Z, Zhao M H, Yuan P F. 2011b. Geologic characteristics of the Marau Lead-Zinc ore deposit in Ketapang of Kalimantan Province, Indonesia. Resources Survey & Environment, 32(4): 285–290. (in Chinese with English abstract)

    Google Scholar 

  • Yu J H, O’Reilly S Y, Wang L J, Griffin W L, Zhang M, Wang R C, Jiang S Y, Shu L S. 2008. Where was South China in the Rodinia supercontinent?: evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164(1–2): 1–15.

    Article  Google Scholar 

  • Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1): 227–273.

    Article  Google Scholar 

  • Zhang J, Li J Y, Liu J F, Li Y F, Qu J F, Feng Q W. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: new information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912–2934. (in Chinese with English abstract)

    Google Scholar 

  • Zhao Y L, Liu Y J, Li W M, Feng Z Q, Wen Q B, Liang C Y. 2018. Detrital zircon LA-ICP-MS U-Pb age of Late Carboniferous to Early Permian sandstones in central Great Xing’an Range and its geological significance. Earth Science, 43(6): 2055–2075. (in Chinese with English abstract)

    Google Scholar 

  • Zhou D, Liu H L, Chen H Z. 2005. Mesozoic-Cenozoic magmatism in southern South China Sea and its surrounding areas and its implications to tectonics. Geotectonica et Metallogenia, 29(3): 354–363. (in Chinese with English abstract)

    Google Scholar 

  • Zong K Q, Liu Y S, Gao C G, Hu Z C, Gao S, Gong H J. 2010. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chemical Geology, 269(3–4): 237–251.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Robert HALL (Department of Earth Sciences, SE Asia Research Group, Royal Holloway University of London, Egham, United Kingdom), the anonymous reviewers, and the editors for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saijun Sun.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41803038, 41903005), the Guangxi Natural Science Foundation (No. 2018GXNSFAA138193), and the China Postdoctoral Science Foundation (No. 2019M662458)

Electronic supplementary material

343_2021_405_MOESM1_ESM.xls

Table 1S LA-ICP-MS U-Pb zircon analytical results for sandstones of the Ketapang complex in the Lamandau region, SW Borneo, Indonesia

343_2021_405_MOESM2_ESM.xls

Table 2S REE and trace elements (ppm) results of zircons from sandstones of the Ketapang complex in the Lamandau region, SW Borneo, Indonesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Sun, S., Yang, X. et al. Detrital zircon U-Pb age perspective on the sediment provenance and its geological significance of sandstones in the Lamandau region, SW Borneo, Indonesia. J. Ocean. Limnol. 40, 496–514 (2022). https://doi.org/10.1007/s00343-021-0405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-0405-6

Keyword

Navigation