Skip to main content
Log in

Eukaryotic microbial distribution pattern and its potential effects on fisheries in the fish reserves of Qiantang River in breeding season

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To examine the eukaryotic biodiversity of aquatic ecosystems in the Qiantang River, China, eukaryotic microbes in the river were investigated using 18S rRNA gene sequencing during the breeding season (July to August 2018). Four distinct distribution patterns (1. Jiande; 2. Tonglu and Fuyang; 3. Jiubao; 4. Yanguan) of the microbial community and their potential effects on fishery activities were observed. Results show lower abundances of Dinophyta and Fungi and higher abundances of Cryptophyta and Chlorophyta in Tonglu and Fuyang than those in the other three sections. In addition, the reserves (Tonglu and Fuyang) destabilized the original eukaryotic microbial co-occurrence network. Among all the environmental factors measured, nitrogen (nitrite, nitrate, ammonium), water temperature and total chlorophyll a acted as major driving factors that controlled the eukaryotic microbial distribution. Furthermore, the existence of some algae (e.g., Chrysophyceae, Cryptophytes, and Chlorophyceae) and fungi (e.g., Rhizophydium) in Tonglu and Fuyang was beneficial to juvenile fish growth and water quality, although some detrimental species (e.g., Aphanomyces) needed attention. This study provides further insights into the sustainable protection and utilization of rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are only available from the corresponding author on reasonable request, due to some limitation.

References

  • Abell J M, Özkundakci D, Hamilton D P. 2010. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems, 13(7): 966–977, https://doi.org/10.1007/s10021-010-9367-9.

    Google Scholar 

  • Andrews S W, Gross E S, Hutton P H. 2017. Modeling salt intrusion in the San Francisco Estuary prior to anthropogenic influence. Cont. Shelf Res., 146: 58–81, https://doi.org/10.1016/jxsr.2017.07.010.

    Google Scholar 

  • Anthony E J, Brunier G, Besset M, Goichot M, Dussouillez P, Nguyen V L. 2015. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep., 5: 14 745, https://doi.org/10.1038/srep14745.

    Google Scholar 

  • Arrigo K R. 2004. Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349–355, https://doi.org/10.1038/nature04159.

    Google Scholar 

  • Baird M E, Walker S J, Wallace B B, Webster I T, Parslow J S. 2003. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model. Estuar., Coast. Shelf Sci., 56(3–4): 685–695, https://doi.org/10.1016/S0272-7714(02)00219-6.

    Google Scholar 

  • Blanchet F G, Legendre P, Borcard D. 2008. Modelling directional spatial processes in ecological data. Ecol. Modell., 215(4): 325–336, https://doi.org/10.1016/j.ecolmodel.2008.04.001.

    Google Scholar 

  • Bokulich N A, Subramanian S, Faith J J, Gevers D, Gordon J I, Knight R, Mills D A, Caporaso J G. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods, 10(1): 57–59, https://doi.org/10.1038/nmeth.2276.

    Google Scholar 

  • Brown B L, Swan C M. 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol., 79(3): 571–580, https://doi.org/10.1111/j.1365-2656.2010.01668.x.

    Google Scholar 

  • Chen J, Gao C, Zeng X F, Xiong M, Wang Y J, Jing C, Krysanova V, Huang J L, Zhao N, Su B D. 2017. Assessing changes of river discharge under global warming of 1.5°C and 2°C in the upper reaches of the Yangtze River Basin: approach by using multiple- GCMs and hydrological models. Quat. Int., 453: 63–73, https://doi.org/10.1016/j.quaint.2017.01.017.

    Google Scholar 

  • Chen W D, Ren K X, Isabwe A, Chen H H, Liu M, Yang J. 2019. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome, 7: 138, https://doi.org/10.1186/s40168-019-0749-8.

    Google Scholar 

  • Chust G, Irigoien X, Chave J, Harris R P. 2013. Latitudinal phytoplankton distribution and the neutral theory of biodiversity. Global Ecol. Biogeogr., 22(5): 531–543, https://doi.org/10.1111/geb.12016.

    Google Scholar 

  • Clarke K R, Warwick R M. 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser., 216: 265–278, https://doi.org/10.3354/meps216265.

    Google Scholar 

  • Coyte K Z, Schluter J, Foster K R. 2015. The ecology of the microbiome: networks, competition, and stability. Science, 350(6261): 663–666, https://doi.org/10.1126/science.aad2602.

    Google Scholar 

  • De Nooijer L J, Toyofuku T, Kitazato H. 2009. Foraminifera promote calcification by elevating their intracellular pH. Proc. Natl. Acad. Sci. USA, 106(36): 15 374–15 378, https://doi.org/10.1073/pnas.0904306106.

    Google Scholar 

  • DeBoer J A, Webber C M, Dixon T A, Pope K L. 2016. The influence of a severe reservoir drawdown on springtime zooplankton and larval fish assemblages in Red Willow Reservoir, Nebraska. J. Freshwater Ecol., 31(1): 131–146, https://doi.org/10.1080/02705060.2015.1055312.

    Google Scholar 

  • Deng Y, Jiang Y H, Yang Y F, He Z L, Luo F, Zhou J Z. 2012. Molecular ecological network analyses. BMC Bioinf., 13: 113, https://doi.org/10.1186/1471-2105-13-113.

    Google Scholar 

  • Deng Y, Zhang P, Qin Y J, Tu Q C, Yang Y F, He Z L, Schadt C W, Zhou J Z. 2016. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environ. Microbiol., 18(1): 205–218, https://doi.org/10.1111/1462-2920.12981.

    Google Scholar 

  • Duarte L N, Coelho F J R C, Cleary D F R, Bonifácio D, Martins P, Gomes N C M. 2019. Bacterial and microeukaryotic plankton communities in a semiintensive aquaculture system of sea bass (Dicentrarchus labrax): a seasonal survey. Aquaculture, 503: 59–69, https://doi.org/10.1016/j.aquaculture.2018.12.066.

    Google Scholar 

  • Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19): 2 460–2 461, https://doi.org/10.1093/bioinformatics/btq461.

    Google Scholar 

  • Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol., 10(8): 538–550, https://doi.org/10.1038/nrmicro2832.

    Google Scholar 

  • Foysal J, Lisa A K. 2018. Isolation and characterization of Bacillus sp. strain BC01 from soil displaying potent antagonistic activity against plant and fish pathogenic fungi and bacteria. J. Genet. Eng. Biotechnol., 16(2): 387–392, https://doi.org/10.1016/jjgeb.2018.01.005.

    Google Scholar 

  • Frenken T, Alacid E, Berger S A, Bourne E C, Gerphagnon M, Grossart H P, Gsell A S, Ibelings B W, Kagami M, Küpper F C, Letcher P M, Loyau A, Miki T, Nejstgaard J C, Rasconi S, Reñé A, Rohrlack T, Rojas-Jimenez K, Schmeller D S, Scholz B, Seto K, Sime-Ngando T, Sukenik A, Van de Waal D B, Van den Wyngaert S, Van Donk E, Wolinska J, Wurzbacher C, Agha R. 2017. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol., 19(10): 3 802–3 822, https://doi.org/10.1111/1462-2920.13827.

    Google Scholar 

  • Gong J, Dong J, Liu X H, Massana R. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist, 164(3): 369–379, https://doi.org/10.1016/j.protis.2012.11.006.

    Google Scholar 

  • Guimerà R, Sales-Pardo M, Amaral L A N. 2007. Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys., 3(1): 63–69, https://doi.org/10.1038/nphys489.

    Google Scholar 

  • Hong B, Sun Z Z, Zhang Y P, Zeng Z C, Tian Z Q. 2009. Evaluation on effect of fishery resource enhancement and release in Huangpujiang upstream. Fish. Sci. Technol. Inf., 36(4): 178–181. (in Chinese)

    Google Scholar 

  • Hu A Y, Li S, Zhang L P, Wang H J, Yang J, Luo Z X, Rashid A, Chen S Q, Huang W X, Yu C P. 2018. Prokaryotic footprints in urban water ecosystems: a case study of urban landscape ponds in a coastal city, China. Environ. Pollut., 242: 1 729–1 739, https://doi.org/10.1016/j.envpol.2018.07.097.

    Google Scholar 

  • Huang Y L, Huang J L. 2019. Coupled effects of land use pattern and hydrological regime on composition and diversity of riverine eukaryotic community in a coastal watershed of Southeast China. Sci. Total Environ., 660: 787–798, https://doi.org/10.1016/j.scitotenv.2019.01.063.

    Google Scholar 

  • Huisman J, Matthijs H C P, Visser P M. 2005. Harmful Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3022-3.

    Google Scholar 

  • Ibelings B W, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E. 2004. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol., 40(3): 437–453, https://doi.org/10.1111/j.1529-8817.2004.03117.x.

    Google Scholar 

  • Isabwe A, Ren K X, Wang Y M, Peng F, Chen H H, Yang J. 2019. Community assembly mechanisms underlying the core and random bacterioplankton and microeukaryotes in a river-reservoir system. Water, 11(6): 1127, https://doi.org/10.3390/w11061127.

    Google Scholar 

  • Isabwe A, Yang J R, Wang Y M, Liu L M, Chen H H, Yang J. 2018. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river. Sci. Total Environ., 630: 658–667, https://doi.org/10.1016/j.scitotenv.2018.02.210.

    Google Scholar 

  • James T Y, Letcher P M, Longcore J E, Mozley-Standridge S E, Porter D, Powell M J, Griffith G W, Vilgalys R. 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 98(6): 860–871, https://doi.org/10.3852/mycologia.98.6.860.

    Google Scholar 

  • Kinnula H, Mappes J, Valkonen J K, Pulkkinen K, Sundberg L R. 2017. Higher resource level promotes virulence in an environmentally transmitted bacterial fish pathogen. Evol. Appl., 10(5): 462–470, https://doi.org/10.1111/eva.12466.

    Google Scholar 

  • Lefèvre E, Roussel B, Amblard C, Sime-Ngando T. 2008. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One, 3(6): e2324, https://doi.org/10.1371/journal.pone.0002324.

    Google Scholar 

  • Liu J, Soininen J, Han B P, Declerck S A J. 2013a. Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. J. Biogeogr., 40(12): 2 238–2 248, https://doi.org/10.1111/jbi.12160.

    Google Scholar 

  • Liu L M, Chen H H, Liu M, Yang J R, Xiao P, Wilkinson D M, Yang J. 2019. Response of the eukaryotic plankton community to the cyanobacterial biomass cycle over 6 years in two subtropical reservoirs. ISME J., 13(9): 2 196–2 208, https://doi.org/10.1038/s41396-019-0417-9.

    Google Scholar 

  • Liu L M, Yang J, Lv H, Yu X Q, Wilkinson D M, Yang J. 2015. Phytoplankton communities exhibit a stronger response to environmental changes than bacterioplankton in three subtropical reservoirs. Environ. Sci. Technol., 49(18): 10 850–10 858, https://doi.org/10.1021/acs.est.5b02637.

    Google Scholar 

  • Liu L M, Yang J, Yu X Q, Chen G J, Yu Z. 2013b. Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors. PLoS One, 8(11): e81232, https://doi.org/10.1371/journal.pone.0081232.

    Google Scholar 

  • Lv H, Yang J, Liu L M. 2013. Temporal pattern prevails over spatial variability in phytoplankton communities from a subtropical water supply reservoir. Oceanol. Hydrobiol. Stud., 42(4): 420–430, https://doi.org/10.2478/s13545-013-0098-3.

    Google Scholar 

  • May R M. 2001. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.

    Google Scholar 

  • Meyers S D, Linville A J, Luther M E. 2014. Alteration of residual circulation due to large-scale infrastructure in a coastal plain estuary. Estuar. Coast., 37(2): 493–507, https://doi.org/10.1007/s12237-013-9691-3.

    Google Scholar 

  • Neutel A M, Heesterbeek J A P, Van De Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, De Ruiter P C. 2007. Reconciling complexity with stability in naturally assembling food webs. Nature, 449(7162): 599–602, https://doi.org/10.1038/nature06154.

    Google Scholar 

  • Ortiz-Cañavate B K, Wolinska J, Agha R. 2019. Fungicides at environmentally relevant concentrations can promote the proliferation of toxic bloom-forming cyanobacteria by inhibiting natural fungal parasite epidemics. Chemosphere, 229: 18–21, https://doi.org/10.1016/j.chemosphere.2019.04.203.

    Google Scholar 

  • Peng B, Wang Y N, Zhang H J, Chen C, Luo H L, Wang M. 2019. Ecological assessment of phytoplankton community via microscopic method and 18S rRNA gene sequencing in Pearl River Estuary. E3S Web Conf., 131: 01043, https://doi.org/10.1051/e3sconf/201913101043.

    Google Scholar 

  • Priscu J C. 1995. Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biol., 34(2): 215–227, https://doi.org/10.1111/j.1365-2427.1995.tb00882.x.

    Google Scholar 

  • Saylor R K, Miller D L, Vandersea M W, Bevelhimer M S, Schofield P J, Bennett W A. 2010. Epizootic ulcerative syndrome caused by Aphanomyces invadans in captive bullseye snakehead Channa marulius collected from South Florida, USA. Dis. Aquat. Org., 88(2): 169–175, https://doi.org/10.3354/dao02158.

    Google Scholar 

  • Shade A, Peter H, Allison S D, Baho D L, Berga M, Bürgmann H, Huber D H, Langenheder S, Lennon J T, Martiny J B H, Matulich K L, Schmidt T M, Handelsmanl J. 2012. Fundamentals of microbial community resistance and resilience. Front. Microbiol., 3: 417, https://doi.org/10.3389/fmicb.2012.00417.

    Google Scholar 

  • Shetye S S, Kurian S, Naik H, Gauns M, Chndrasekhararao A V, Kumar A, Naik B. 2019. Variability of organic nitrogen and its role in regulating phytoplankton in the eastern Arabian Sea. Mar. Pollut. Bull., 141: 550–560, https://doi.org/10.1016/j.marpolbul.2019.02.036.

    Google Scholar 

  • Steele J A, Countway P D, Xia L, Vigil P D, Beman J M, Kim D Y, Chow C E T, Sachdeva R, Jones A C, Schwalbach M S, Rose J M, Hewson I, Patel A, Sun F Z, Caron D A, Fuhrman J A. 2011. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J, 5(9): 1 414–1 425, https://doi.org/10.1038/ismej.2011.24.

    Google Scholar 

  • Su Z F, Wu J M, Liu W Y, He J J, Xu J H. 2014. Study on assessment of enhancement effect of fishery stock in Changzhou City. Mod. Agric. Sci. Technol., (12): 261–262, 264. (in Chinese with English abstract)

  • Sun W, Xia C Y, Xu M Y, Guo J, Sun G P, Wang A J. 2014. Community structure and distribution of planktonic ammonia-oxidizing Archaea and bacteria in the Dongjiang River, China. Res. Microbiol., 165(8): 657–670, https://doi.org/10.1016/j.resmic.2014.08.003.

    Google Scholar 

  • Tasevska O, Jersabek C D, Kostoski G, Gušeska D. 2012. Differences in rotifer communities in two freshwater bodies of different trophic degree (Lake Ohrid and Lake Dojran, Macedonia). Biologia, 67(3): 565–572, https://doi.org/10.2478/s11756-012-0041-x.

    Google Scholar 

  • Tong Y Y. 2001. Analysis on the status and constraints of fishery resources development and utilization in the lower reaches of the Qiantang River. Chin. Fish., (4): 18–19. (in Chinese)

  • Vrebos D, Beauchard O, Meire P. 2017. The impact of land use and spatial mediated processes on the water quality in a river system. Sci. Total Environ., 601–602: 365–373, https://doi.org/10.1016/j.scitotenv.2017.05.217.

    Google Scholar 

  • Wan Y, Xu L L, Hu J, Xu C, Wan A, An S Q, Chen Y S. 2015. The role of environmental and spatial processes in structuring stream macroinvertebrates communities in a large river basin. Clean-Soil, Air, Water, 43(12): 1 633–1 639, https://doi.org/10.1002/clen.201300861.

    Google Scholar 

  • Wang Z H. 1995. Protection and exploition of fishery resources in the Qiantang River. Chin. J. Fish., 8(2): 9–17, 8. (in Chinese)

    Google Scholar 

  • Wen X L, Xi Y L, Qian F P, Zhang G, Xiang X L. 2011. Comparative analysis of rotifer community structure in five subtropical shallow lakes in East China: role of physical and chemical conditions. Hydrobiologia, 661(1): 303–316, https://doi.org/10.1007/s10750-010-0539-6.

    Google Scholar 

  • Xue Y Y, Chen H H, Yang J R, Liu M, Huang B Q, Yang J. 2018. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J., 12(9): 2 263–2 277, https://doi.org/10.1038/s41396-018-0159-0.

    Google Scholar 

  • Zhang A J, Liu J D, Yang Y J, Guo A H, Gu Z M. 2016. Analysis of community characteristics of macrozoobenthos in enhancement and releasing zone in Tonglu section of Qiantang River. Acta Agric. Zhejiang, 28(8): 1 323–1 331. (in Chinese with English abstract)

    Google Scholar 

  • Zhang H J, Huang X L, Huang L, Bao F J, Xiong S L, Wang K, Zhang D M. 2018a. Microeukaryotic biogeography in the typical subtropical coastal waters with multiple environmental gradients. Sci. Total Environ., 635: 618–628, https://doi.org/10.1016/j.scitotenv.2018.04.142.

    Google Scholar 

  • Zhang K, Jiang F Y, Chen H, Dibar D T, Wu Q L, Zhou Z Z. 2019. Temporal and spatial variations in zooplankton communities in relation to environmental factors in four floodplain lakes located in the middle reach of the Yangtze River, China. Environ. Pollut., 251: 277–284, https://doi.org/10.1016/j.envpol.2019.04.139.

    Google Scholar 

  • ai]Zhang X M, Wang X J, Tu Z, Zhang P D, Wang Y Z, Gao T X, Wang S J. 2009. Current status and prospect of fisheries resource enhancement in Shandong Province. Chin. Fish. Econ., 27(2): 51–58. (in Chinese with English abstract)

    Google Scholar 

  • Zhang Y Z, Zheng S J, Zhang W P. 2018b. The assessment of releasing and enhancement of fishery resources in the Qiantang River. J. Zhejiang Norm. Univ. (Nat. Sci.), 41(1): 97–101. (in Chinese with English abstract)

    Google Scholar 

  • Zhao K, Song K, Pan Y D, Wang L Z, Da L J, Wang Q X. 2017. Metacommunity structure of zooplankton in river networks: roles of environmental and spatial factors. Ecol. Indic., 73: 96–104, https://doi.org/10.1016/j.ecolind.2016.07.026.

    Google Scholar 

  • Zorzal-Almeida S, Salim A, Andrade M R M, de Novaes Nascimento M, Bini L M, Bicudo D C. 2018. Effects of land use and spatial processes in water and surface sediment of tropical reservoirs at local and regional scales. Sci. Total Environ., 644: 237–246, https://doi.org/10.1016/j.scitotenv.2018.06.361.

    Google Scholar 

Download references

Acknowledgment

We would like to thank the Beijing Novogene Biotechnology Co., Ltd. for 18S rRNA gene sequences. The authors wish to thank the anonymous reviewers for their valuable comments and suggestions, which were helpful in improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongming Zheng.

Additional information

Supported by the Fisheries Species Conservation Program of the Agricultural Department of China (Nos. 171821303154051044, 17190236), the Natural Science Foundation of Zhejiang Province (No. LQ20C190003), the Natural Science Foundation of Ningbo Municipality (Nos. 2019A610421, 2019A610443), and the K. C. Wong Magna Fund in Ningbo University

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Zhao, L., Yang, W. et al. Eukaryotic microbial distribution pattern and its potential effects on fisheries in the fish reserves of Qiantang River in breeding season. J. Ocean. Limnol. 39, 566–581 (2021). https://doi.org/10.1007/s00343-020-9331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-9331-2

Keyword

Navigation