Transformation of coccolithophorid Emiliania huxleyi harboring a marine virus (Coccolithoviruses) serine palmitoyltransferase (SPT) gene by electroporation

Abstract

Emiliania huxleyi is the most prominent modern coccolithophore, a group of marine unicellular eukaryotes that play a critical role in ocean biogeochemistry. Coccolithoviruses are large double stranded DNA viruses, which is responsible for the demise of large oceanic blooms formed by E. huxleyi. E. huxleyi virus (EhVs) acquired a series of enzyme-coding genes predicted to be involved in the sphingolipid biosynthesis by horizontal gene transfer between virus-host. Currently, there is limited experimental validation identifying the functions of these genes in EhV. Genetic transformation of eukaryotic cells is a powerful tool to get an insight into gene functions of the studied organisms. Serine palmitoyltransferase (SPT) catalyzes the first committed step in de novo sphingolipid biosynthetic pathway. Here, a novel vector system for the transformation of E. huxleyi was designed. It contained fragments of promoter and terminator sequences of E. huxleyi endogenic fucoxanthin chlorophyll a/c-binding protein gene “fcp” and harbored EhV-99B1 spt gene. The resultant recombinant transformation vectors pEhux-I-spt and pEhux-II were co-transferred into E. huxleyi BOF92 by electroporation. Transformants were obtained upon glufosinate-ammonium selection, and confirmed by Southern hybridization, genome PCR, qRT-PCR and Western blot screening of spt gene, which indicated that spt gene was integrated into the nuclear genome and was expressed at the mRNA and protein levels. The expression of the viral spt gene led to differences in lipid compositions analyzed using thin-layer chromatography (TLC). The results present the genetic transformation system for E. huxleyi, providing additional genetic resource with potential for exploring basic biological questions such as the virus-host interactions.

This is a preview of subscription content, access via your institution.

References

  1. Ausubel F M, Kingston R E, Seidman J G, Struhl K, Brent R, Moore D D, Smith J A. 1999. Short protocols in molecular biology, 4th edn. Wiley, NY. https://doi.org/10.1038/206645a0.

    Google Scholar 

  2. Bratbak G, Egge J K, Heldal M. 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series, 93(1–2): 39–48, https://doi.org/10.3354/meps093039.

    Article  Google Scholar 

  3. Brown L E, Sprecher S L, Keller L R. 1991. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Molecular and Cellular Biology, 11(4): 2 328–2 332, https://doi.org/10.1128/MCB.1L4.2328.

    Article  Google Scholar 

  4. Brussaard C P D. 2004. Viral control of phytoplankton populations—a review. Journal of Eukaryotic Microbiology, 51(2): 125–138, https://doi.org/10.1111/j.1550-7408.2004.tb00537.x.

    Article  Google Scholar 

  5. Čgovnik U, Novaković S. 2004. Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Bioelectrochemistry, 62(1): 73–82, https://doi.org/10.1016/j.bioelechem.2003.10.009.

    Article  Google Scholar 

  6. Coll J M. 2006. Methodologies for transferring DNA into eukaryotic microalgae: a review. Spanish Journal of Agricultural Research, 4(4): 316–330, https://doi.org/10.5424/sjar/2006044-209.

    Article  Google Scholar 

  7. Dymond J, Lyle M. 1985. Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: implications for atmospheric CO2 variations during the Pleistocene. Limnology and Oceanography, 30(4): 699–712, https://doi.org/10.4319/lo.1985.30.4.0699.

    Article  Google Scholar 

  8. Endo H, Yoshida M, Uji T, Saga N, Inoue K, Nagasawa H. 2016. Stable nuclear transformation system for the coccolithophorid alga Pleurochrysis carterae. Scientific Reports, 6(1): 22–252, https://doi.org/10.1038/srep22252.

    Article  Google Scholar 

  9. Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C. 1999. Transformation of nonselectable reporter genes in marine diatoms. Marine Biotechnology, 1(3): 239–251, https://doi.org/10.1007/PL00011773.

    Article  Google Scholar 

  10. Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrates Animals, Plenum Publishing, New York, p.29–60, https://doi.org/10.1007/978-1-4615-8714-9_3.

    Google Scholar 

  11. Hanada K, Hara T, Nishijima M. 2000. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. Journal of Biological Chemistry, 275(12): 8 409–8 415, https://doi.org/10.1074/jbc.275.12.8409.

    Article  Google Scholar 

  12. Hernández A S R, Flores J A, Sierro F J, Fuertes M A, Cros L, Trull T W. 2018. Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone. Biogeosciences, 15(6): 1 843–1 862, https://doi.org/10.5194/bg-15-1843-2018.

    Article  Google Scholar 

  13. Hlavova M, Turoczy Z, Bisova K. 2015. Improving microalgae for biotechnology — from genetics to synthetic biology. Biotechnology Advances, 33(6): 1 194–1 203, https://doi.org/10.1016/j.biotechadv.2015.01.009.

    Article  Google Scholar 

  14. Kammerer W, Cove D J. 1996. Genetic analysis of the effects of re-transformation of transgenic lines of the moss Physcomitrella patens. Molecular and General Genetics MGG, 250(3): 380–382, https://doi.org/10.1007/BF02174397.

    Google Scholar 

  15. Kilian O, Benemann C S E, Niyogi K K, Vick B. 2011. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proceedings of the National Academy of Science of the United State of America, 108(52): 21 265–21 269, https://doi.org/10.1073/pnas.1105861108.

    Article  Google Scholar 

  16. Laguna R, Romo J, Read B A, Wahlund T M. 2001. Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi. Applied and Environmental Microbiology, 67(9): 3 824–3 831, https://doi.org/10.1128/AEM.67.9.3824-3831.2001.

    Article  Google Scholar 

  17. Li F C, Qin S, Jiang P, Wu Y, Zhang W. 2009. The integrative expression of GUS gene driven by FCP promoter in the seaweed Laminaria japonica (Phaeophyta). Journal of Applied Phycology, 21(3): 287–293, https://doi.org/10.1007/s10811-008-9366-9.

    Article  Google Scholar 

  18. Liu J W, Cai W C, Fang X, Wang X T, Li G L. 2018. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi. Archives of Microbiology, 200(3): 413–422, https://doi.org/10.1007/s00203-017-1460-4.

    Article  Google Scholar 

  19. Liu X H, Zheng T L, Cai Y Q, Liu J W. 2012. Cloning, expression and characterization of serine palmitoyltransferase (SPT)-like gene subunit (LCB2) from marine Emiliania huxleyi virus (Coccolithovirus). Acta Oceanologica Sinica, 31(6): 127–138, https://doi.org/10.1007/s13131-012-0259-z.

    Article  Google Scholar 

  20. Michaelson L V, Dunn T M, Napier J A. 2010. Viral trans-dominant manipulation of algal sphingolipids. Trends in Plant Science, 15(12): 651–655, https://doi.org/10.1016/j.tplants.2010.09.004.

    Article  Google Scholar 

  21. Miyagawa A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M. 2009. Research note: high efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis. Phycological Research, 57(2): 142–146, https://doi.org/10.1111/j.1440-1835.2009.00531.x.

    Article  Google Scholar 

  22. Miyagawa-Yamaguchi A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M. 2011. Stable nuclear transformation of the diatom Chaetoceros sp. Phycological Research, 59(2): 113–119, https://doi.org/10.1111/j.1440-1835.2011.00607.x.

    Article  Google Scholar 

  23. Monier A, Pagarete A, de Vargas C, Allen M J, Read B, Claverie J M, Ogata H. 2009. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Research, 19(8): 1 441–1 449, https://doi.org/10.1101/gr.091686.109.

    Article  Google Scholar 

  24. Mussgnug J H. 2015. Genetic tools and techniques for Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology, 99(13): 5 407–5 418, https://doi.org/10.1007/s00253-015-6698-7.

    Article  Google Scholar 

  25. Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T. 2013. Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580—a high triglyceride producer. Marine Biotechnology, 15(1): 48–55, https://doi.org/10.1007/s10126-012-9457-0.

    Article  Google Scholar 

  26. Niu Y F, Yang Z K, Zhang M H, Zhu C C, Yang W D, Liu J S, Li H Y. 2012. Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. BioTechniques, 52(6): 1–3, https://doi.org/10.2144/000113881.

    Google Scholar 

  27. Niu Y F, Zhang M H, Li D W, Yang W D, Liu J S, Bai W B, Li H Y. 2013. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Marine Drugs, 11(11): 4 558–4 569, https://doi.org/10.3390/md11114558.

    Article  Google Scholar 

  28. Oeltjen A, Marquardt J, Rhiel E. 2004. Differential circadian expression of genes fcp2 and fcp6 in Cyclotella cryptica. International Microbiology, 7(2): 127–131.

    Google Scholar 

  29. Qin S, Lin H Z, Jiang P. 2012. Advances in genetic engineering of marine algae. Biotechnology Advances, 30(6): 1 602–1 613, https://doi.org/10.1016/j.biotechadv.2012.05.004.

    Article  Google Scholar 

  30. Radakovits R, Jinkerson R E, Darzins A, Posewitz M C. 2010. Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4): 486–501, https://doi.org/10.1128/EC.00364-09.

    Article  Google Scholar 

  31. Read B A, Kegel J, Klute M J, Kuo A, Lefebvre S C, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie J M, Frickenhaus S, Gonzalez K, Herman E K, Lin Y C, Napier J, Ogata H, Sarno A F, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Dacks J B, Delwiche C F, Dyhrman S T, Glöckner G, John U, Richards T, Worden A Z, Zhang X Y, Grigoriev I V. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499(7457): 209–213, https://doi.org/10.1038/nature12221.

    Article  Google Scholar 

  32. Rose S L, Fulton J M, Brown C M, Natale F, Van Mooy B A S, Bidle K D. 2014. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions. Environmental Microbiology, 16(4): 1 150–1 166, https://doi.org/10.1111/1462-2920.12357.

    Article  Google Scholar 

  33. Rosenwasser S, Mausz M A, Schatz D, Sheyn U, Malitsky S, Aharoni A, Weinstock E, Tzfadia O, Ben-Dor S, Feldmesser E, Pohnert G, Vardi A. 2014. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the Ocean. Plant Cell, 26(6): 2 689–2 707, https://doi.org/10.1105/tpc.114.125641.

    Article  Google Scholar 

  34. Schneider-Schaulies J, Schneider-Schaulies S. 2015. Sphingolipids in viral infection. Biological Chemistry, 396(6–7): 585–595, https://doi.org/10.1515/hsz-2014-0273.

    Article  Google Scholar 

  35. Sekino K, Shiraiwa Y. 1996. Evidence for the involvement of mitochondrial respiration in calcification in a marine coccolithophorid, Emiliania huxleyi. Plant and Cell Physiology, 37(7): 1 030–1 033, https://doi.org/10.1093/oxfordjournals.pcp.a029034.

    Article  Google Scholar 

  36. Suttle C A. 2005. Viruses in the sea. Nature, 437(7057): 356–361, https://doi.org/10.1038/nature04160.

    Article  Google Scholar 

  37. Vardi A, Van Mooy B A S, Fredricks H F, Popendorf K J, Ossolinski J E, Haramaty L, Bidle K D. 2009. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science, 326(5954): 861–865, https://doi.org/10.1126/science.1177322.

    Article  Google Scholar 

  38. Velmurugan N, Deka D. 2018. Transformation techniques for metabolic engineering of diatoms and haptophytes: current state and prospects. Applied Microbiology and Biotechnology, 102(10): 4 255–4 267, https://doi.org/10.1007/s00253-018-8925-5.

    Article  Google Scholar 

  39. Watanabe S, Ohnuma M, Sato J, Yoshikawa H, Tanaka K. 2011. Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. The Journal of General and Applied Microbiology, 57(1): 69–72, https://doi.org/10.2323/jgam.57.69.

    Article  Google Scholar 

  40. Westbroek P, Brown C W, Van Bleijswijk J, Brownlee C, Brummer G J, Conte M, Egge J, Fernández E, Jordan R, Knappertsbusch M, Stefels J, Veldhuis M, van der Wal P, Young J. 1993. A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change, 8(1–2): 27–46, https://doi.org/10.1016/0921-8181(93)90061-R.

    Article  Google Scholar 

  41. Wilson W H, Schroeder D C, Allen M J, Holden M T G, Parkhill J, Barrell B G, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail M A, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P. 2005. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science, 309(5737): 1 090–1 092, https://doi.org/10.1126/science.1113109.

    Article  Google Scholar 

  42. Xue J, Niu Y F, Huang T, Yang W D, Liu J S, Li H Y. 2015. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metabolic Engineering, 27: 1–9, https://doi.org/10.1016/j.ymben.2014.10.002.

    Article  Google Scholar 

  43. Zeng J, Liu S S Y, Cai W C, Jiang H R, Lu X, Li G L, Li J, Liu J W. 2019. Emerging lipidome patterns associated with marine Emiliania huxleyi-virus model system. Science of the Total Environment, 688: 521–528, https://doi.org/10.1016/j.scitotenv.2019.06.284.

    Article  Google Scholar 

  44. Ziv C, Malitsky S, Othman A, Ben-Dor S, Wei Y, Zheng S N, Aharoni A, Hornemann T, Vardi A. 2016. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proceedings of the National Academy of Science of the United State of America, 113(13): E1 907–E1 916, https://doi.org/10.1073/pnas.1523168113.

    Article  Google Scholar 

Download references

Acknowledgment

Our deepest thanks go to Prof. Gunnar BRATBAK (Department of Biology, University of Bergen) for providing the E. huxleyi BOF92 strain and the E. huxleyi virus 99B1 strain friendly. We also would appreciate Prof. Kehou PAN and Baohua ZHU (Ocean University of China) for providing plasmid pSP73.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guiling Li or Jingwen Liu.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41576166, 21707042, 31771972) and Fujian Province Natural Science Foundation of China (Nos. 2019J01696, 2017J01447, 2017J01636)

Data Availability Statement

The datasets generated during and/or analyzed in this study are available from the corresponding author upon reasonable request.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Wang, X., Su, J. et al. Transformation of coccolithophorid Emiliania huxleyi harboring a marine virus (Coccolithoviruses) serine palmitoyltransferase (SPT) gene by electroporation. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-9325-0

Download citation

Keyword

  • Emiliania huxleyi
  • coccolithovirus
  • genetic transformation
  • serine palmitoyltransferase (SPT)
  • total lipid