Skip to main content
Log in

Petrogenesis of volcanic rocks from Eastern Manus Basin: indications in mineralogy and geochemistry

  • Geology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To understand the petrogenesis and magma evolution history in the Eastern Manus Basin (EMB), geochemistry of pyroxene and plagioclase mineral phenocrysts in basaltic andesites and dacites were reported. The plagioclase-melt thermometry showed that, plagioclase in dacites crystalized in 1 027.2–1 028.5°C under 3.37–5.08 kbar, whereas in basaltic andesite was 1 181.5–1 187.0°C under 1.79–4.46 kbar. Pyroxene compositions and invariable La/Sm vs La values of whole rock powders indicate that lavas were erupted in rapid cooling rate and mainly controlled by fractional crystallization (FC). In addition, oscillatory zonings in plagioclase and pyroxene phenocrysts indicated small local perturbations and degassing episodes in the magma chamber. Some high Mg# clinopyroxene antecrysts were found in EMB lavas. The highest Mg# of parental EMB melts is 69, which falls into the range of initial partial melts from upper mantle peridotite source (68–75). In terms of isotopic compositions, the EMB lavas most likely originated from Indian-type MORB mantle which was influenced by subduction components. In details, the subduction components are mainly derived from the dehydration of a subducted altered oceanic crust, and the contribution of sediment influence is minor. The Pb isotopic compositions and end member modeling further suggest that the source of subduction components is more likely from the Pacific Plate instead of the Solomon Plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barca D, Trua T. 2012. Magma emplacement at anomalous spreading ridge: Constraints due to plagioclase crystals from basalts of Marsili Seamount (Southern Tyrrhenian back-arc). Journal of Volcanology and Geothermal Research, 241-242: 61–77.

    Google Scholar 

  • Barton M, Varekamp J C, Van Bergen M J. 1982. Complex zoning of clinopyroxenes in the lavas of Vulsini, Latium, Italy: evidence for magma mixing. Journal of Volcanology and Geothermal Research, 14(3–4): 361–388.

    Google Scholar 

  • Beier C, Bach W, Turner S, Niedermeier D, Woodhead J, Erzinger J, Krumm S. 2015. Origin of silicic magmas at spreading centres—an example from the south east rift, Manus Basin. Journal of Petrology, 56(2): 255–272.

    Google Scholar 

  • Beier C, Turner S P, Sinton J M, Gill J B. 2010. Influence of subducted components on back-arc melting dynamics in the Manus Basin. Geochemistry, Geophysics, Geosystems, 11(6): Q0AC03.

    Google Scholar 

  • Binns R A, Scott S D. 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Economicg Eology, 88(8): 2 226–2 236.

    Google Scholar 

  • Chen L, Zheng Y F, Zhao Z F. 2018. Geochemical insights from clinopyroxene phenocrysts into the effect of magmatic processes on petrogenesis of intermediate volcanics. Lithos, 316-317: 137–153.

    Google Scholar 

  • Chen S H, O’Reilly S Y, Zhou X H, Griffin W L, Zhang G H, Sun M, Feng J L, Zhang M. 2001. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos, 56(4): 267–301.

    Google Scholar 

  • Chen Z Q, Jiang S Y, Xu Y M, Zhu Z Y, Zhou W. 2015. Petrogenesis and magma evolution of Tertiary basalts from the Langjunshan area in the Jiurui mineralization district, Jiangxi Province: Evidence from pyroxene and feldspar. Acta Petrologica Sínica, 31(3): 686–700. (in Chinese with English abstract)

    Google Scholar 

  • Chu Z Y, Wu F Y, Walker R J, Rudnick R L, Pitcher L, Puchtel I S, Yang Y H, Wilde S A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. Journal of Petrology, 50(10): 1 857–1 898.

    Google Scholar 

  • Cioni R, Marianelli P, Santacroce R. 1998. Thermal and compositional evolution of the shallow magma chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions. Journal of Geophysical Research: Solid Earth, 103(B8): 18 277–18 294.

    Google Scholar 

  • Class C, Miller D M, Goldstein S L, Langmuir C H. 2000. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1(6): 1 004.

    Google Scholar 

  • Craddock P R, Bach W, Seewald J S, Rouxel O J, Reeves E, Tivey M K. 2010. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochimica et Cosmochimica Acta, 74(19): 5 494–5 513.

    Google Scholar 

  • Davidson J P, Morgan D J, Charlier B L A, Harlou R, Hora J M. 2007. Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annual Review of Earth and PlanetarySciences, 35: 273–311.

    Google Scholar 

  • Elardo S M, Shearer C K Jr. 2014. Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar meteorite Northwest Africa 032. American Mineralogist, 9(2–3): 355–368.

    Google Scholar 

  • Exon N F, Stewart W D, Sandy M J, Tiffin D L. 1986. Geology and offshore petroleum prospects of the eastern New Ireland Basin, northeastern Papua New Guinea. BMR Journal of Australian Geology and Geophysics, 10: 39–51.

    Google Scholar 

  • Fan Q C, Hooper P R. 1989. The mineral chemistry of ultramafic xenoliths of Eastern China: implications for upper mantle composition and the paleogeotherms. Journal of Petrology, 30(5): 1 117–1 158.

    Google Scholar 

  • Firouzkouhi Z, Ahmadi A, Lentz D R, Moridi-Farimani A A. 2016. Mixing of basaltic and andesitic magmas in the Bazman volcanic field of southeastern Iran as inferred from plagioclase zoning. Mineralogical Magazine, 81(4): 975–985.

    Google Scholar 

  • Fourre E, Jean-Baptiste P, Charlou J L, Donval J P, Ishibashi J I. 2006. Helium isotopic composition of hydrothermal fluids from the Manus Back-arc Basin, Papua New Guinea. Geochemical Journal, 40(3): 245–252.

    Google Scholar 

  • Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3): 463–513.

    Google Scholar 

  • Galer S J G, O’Nions R K. 1989. Chemical and isotopic studies of ultramafic inclusions from the San Carlos volcanic field, Arizona: a bearing on their petrogenesis. Journal of Petrology, 30(4): 1 033–1 064.

    Google Scholar 

  • Gamo T, Okamura K, Charlou J L, Urabe T, Auzende J M, Ishibashi J, Shitashima K, Chiba H. 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus Back-arc Basin, Papua New Guinea. Geology, 25(2): 139–142.

    Google Scholar 

  • Ginibre C, Wörner G, Kronz A. 2002. Minor- and traceelement zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contributions to Mineralogy and Petrology, 143(3): 300–315.

    Google Scholar 

  • Ginibre C, Wörner G. 2007. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos, 98(1–4): 118–140.

    Google Scholar 

  • Guo K, Zhai S K, Wang X Y, Yu Z H, Lai Z Q, Chen S, Song Z J, Ma Y, Chen Z X, Li X H, Zeng Z G. 2018. The dynamics of the southern Okinawa Trough magmatic system: New insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chemical Geology, 497: 146–161.

    Google Scholar 

  • Hauff F, Hoernle K, Schmidt A. 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochemistry, Geophysics, Geosystems, 4(8): 8913.

    Google Scholar 

  • Hermann J. 2002. Allanite: thorium and light rare earth element carrier in subducted crust. Chemical Geology, 192(3–4): 289–306.

    Google Scholar 

  • Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes. Journal of Geophysical Research, 103. 963–979.

    Google Scholar 

  • Hong L B, Xu Y G, Ren Z Y, Kuang Y S, Zhang Y L, Li J, Wang F Y, Zhang H. 2012. Petrology, geochemistry and Re-Os isotopes of peridotite xenoliths from Yantai, Shandong Province: evidence for Phanerozoic lithospheric mantle beneath eastern North China Craton. Lithos, 155, 256–271.

    Google Scholar 

  • Housh T B, Luhr J F. 1991. Plagioclase-melt equilibria in hydrous systems. American Mineralogist, 76(3): 477–492.

    Google Scholar 

  • Hrischeva E, Scott S D, Weston R. 2007. Metalliferous sediments associated with presently forming volcanogenic massive sulfides: the Susu Knolls hydrothermal field, Eastern Manus Basin, Papua New Guinea. Economic Geology, 102(1): 55–73.

    Google Scholar 

  • Huang P. 2005. The Volcanic Activities and Their Implications in the Okinawa Trough. Ph. D. thesis. Beijing: University of Chinese Academy of Sciences. (in Chinese with English abstract)

    Google Scholar 

  • Huang S C, Farkaš J, Jacobsen S B. 2010. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth and Planetary Science Letters, 292(3–4): 337–344.

    Google Scholar 

  • Kamenetsky V S, Binns R A, Gemmell J B, Crawford A J, Mernagh T P, Maas R, Steele D. 2001. Parental basaltic melts and fluids in Eastern Manus Backarc Basin: implications for hydrothermal mineralisation. Earth and Planetary Science Letters, 184(3–4): 685–702.

    Google Scholar 

  • Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380(6571): 237–240.

    Google Scholar 

  • Lackschewitz K S, Devey C W, Stoffers P, Botz R, Eisenhauer A, Kummetz M, Schmidt M, Singer A. 2004. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted Pacmanus field, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta, 68(21): 44 05–4 427.

    Google Scholar 

  • Lai Z Q, Zhao G T, Han Z Z, Liu B, Bu X J, Leng C X. 2016. Back-arc magma processes in the Okinawa Trough: new insights from textural and compositional variations of plagioclase in basalts. Geological Journal, 51(S1): 346–356.

    Google Scholar 

  • Le Bas M J, Le Maitre R, Streckeisen A, Zanettin B, IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745–750.

    Google Scholar 

  • Leat P T, Pearce J A, Barker P F, Millar I L, Barry T L, Larter R D. 2004. Magma genesis and mantle flow at a subducting slab edge: the south Sandwich arc-basin system. Earth and Planetary Science Letters, 227(1–2): 17–35.

    Google Scholar 

  • Li X H, Zeng Z G, Yang H X, Zhao Y T, Yin X B, Wang X Y, Chen S, Qi H Y, Guo K. 2020. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: insights into petrogenesis and the influence of subduction component. Lithos, 352–353.

  • Liu J G, Rudnick R L, Walker R J, Gao S, Wu F Y, Piccoli P M, Yuan H L, Xu W L, Xu Y G. 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochimica et Cosmochimica Acta, 75(13): 3 881–3 902.

    Google Scholar 

  • Ma Y, Zeng Z G, Chen S, Yin X B, Wang X Y. 2017. Origin of the volcanic rocks erupted in the eastern Manus Basin: Basaltic andesite-andesite-dacite associations. Journal of Ocean University of China, 16(3): 389–402.

    Google Scholar 

  • Macdougall J D, Lugmair G W. 1986. Sr and Nd isotopes in basalts from the East Pacific Rise: significance for mantle heterogeneity. Earth and PlanetaryScience Letters, 77(3–4): 273–284.

    Google Scholar 

  • Mahoney J J, Graham D W, Christie D M, Johnson K T M, Hall L S, Vonderhaar D L. 2002. Between a hotspot and a cold spot: isotopic variation in the southeast Indian ridge asthenosphere, 86°E-118°E. Journal of Petrology, 43(7): 1 155–1 176.

    Google Scholar 

  • Martinez F, Taylor B. 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Marine Geophysical Researches, 18(2–4): 203–224.

    Google Scholar 

  • Marty B, Zimmermann L. 1999. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochimica et Cosmochimica Acta, 63(21): 3 619–3 633.

    Google Scholar 

  • Morimoto N. 1988. Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1): 55–76.

    Google Scholar 

  • Moss R, Scott S D, Binns R A. 2001. Gold content of Eastern Manus Basin volcanic rocks: implications for enrichment in associated hydrothermal precipitates. Economic Geology, 96(1): 91–107.

    Google Scholar 

  • Neave D, Putirka K D. 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102(4): 777–794.

    Google Scholar 

  • Park S H, Lee S M, Kamenov G D, Kwon S T, Lee K Y. 2010. Tracing the origin of subduction components beneath the south east rift in the Manus Basin, Papua New Guinea. Chemical Geology, 269(3–4): 339–349.

    Google Scholar 

  • Pearce J A, Stern R J. 2006. Origin of back-arc basin magmas: Trace element and isotope perspectives. Geophysical Monograph Series, 166: 63–86.

    Google Scholar 

  • Phinney E J, Mann P, Coffin M F, Shipley T H. 1999. Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the North Solomon Trench and Solomon Islands arc. Journal of Geophysical Research: Solid Earth, 104(B9): 20 449–20 466.

    Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3–4): 325–394.

    Google Scholar 

  • Putirka K D, Mikaelian H, Ryerson F, Shaw H. 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1 542–1 554.

    Google Scholar 

  • Putirka K D. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1): 61–120.

    Google Scholar 

  • Reeves E P, Seewald J S, Saccocia P, Bach W, Craddock P R, Shanks W C, Sylva S P, Walsh E, Pichler T, Rosner M. 2011. Geochemistry of hydrothermal fluids from the Pacmanus, northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta, 75(4): 1 088–1 123.

    Google Scholar 

  • Rehkämper M, Hofmann AW. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters, 147(1–4): 93–106.

    Google Scholar 

  • Reubi O, Nicholls I A, Kamenetsky V S. 2003. Early mixing and mingling in the evolution of basaltic magmas: evidence from phenocryst assemblages, Slamet Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research, 119(1–4): 255–274.

    Google Scholar 

  • Rhodes J M, Dungan M A, Blanchard D P, Long P E. 1979. Magma mixing at mid-ocean ridges: evidence from basalts drilled near 22°N on the Mid-Atlantic Ridge. Tectonophysics, 55(1–2): 35–61.

    Google Scholar 

  • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247–263.

    Google Scholar 

  • Rudnick R L, Gao S, Ling W L, Liu Y S, McDonough W F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 77(1–4): 609–637.

    Google Scholar 

  • Scott S D, Binns R A. 1993. Hydrothermal processes and contrasting styles of mineralization in the western Woodlark and eastern Manus basins of the western Pacific. Geological Society, London, Special Publication, 87(1): 191–205.

    Google Scholar 

  • Shcherbakov V D, Plechov P Y, Izbekov P E, Shipman J S. 2010. Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162(1): 83–99.

    Google Scholar 

  • Shimizu N. 1990. The oscillatory trace element zoning of augite phenocrysts. Earth-Science Reviews, 29(1–4): 27–37.

    Google Scholar 

  • Shinjo R. 1998. Petrochemistry and tectonic significance of the emerged late Cenozoic basalts behind the Okinawa Troughs Ryukyu arc system. Journal of Volcanology and Geothermal Research, 80(1): 39–53.

    Google Scholar 

  • Simonetti A, Shore M, Bell K. 1996. Diopside phenocrysts from nephelinite lavas, Napak volcano, eastern Uganda: Evidence for magma mixing. The Canadian Mineralogist, 34(2): 411–421.

    Google Scholar 

  • Sinton J M, Ford L L, Chappell B, Mcculloch M T. 2003. Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. Journal of Petrology, 44(1): 159–195.

    Google Scholar 

  • Smith V C, Blundy J D, Arce J L. 2009. A temporal record of magma accumulation and evolution beneath Nevado de Toluca, Mexico, preserved in plagioclase phenocrysts. Journal of Petrology, 50(3): 405–426.

    Google Scholar 

  • Stracke A and Hegner E. 1998. Rifting-related volcanism in an oceanic post-collisional setting: the Tabar-Lihir-Tanga-Feni (TLTF) island chain, Papua New Guinea, Lithos, 45: 545–560.

    Google Scholar 

  • Sun J, Liu C Z, Wu F Y, Yang Y H, Chu Z Y. 2012. Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton: trace-element and Sr isotope constraints. Chemical Geology, 328: 123–136.

    Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313–345.

    Google Scholar 

  • Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101(3–4): 435–452.

    Google Scholar 

  • Taylor B. 1979. Bismarck sea: evolution of a back-arc basin. Geology, 7(4): 1 190–1 190.

    Google Scholar 

  • Tian L Y, Castillo P R, Hawkins J W, Hilton D R, Hanan B B, Pietruszka A J. 2008. Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research, 178(4): 657–670.

    Google Scholar 

  • Wei X, Xu Y G, Luo Z Y, Zhao J X, Feng Y X. 2015. Composition of the Tarim mantle plume: constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China. Lithos, 230: 69–81.

    Google Scholar 

  • Wood B J, Blundy J D. 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology, 129(2): 166–181.

    Google Scholar 

  • Woodhead J D, Eggins S M, Johnson R W. 1998. Magma genesis in the New Britain island arc: further insights into melting and mass transfer processes. Journal of Petrology, 39(9): 1 641–1 668.

    Google Scholar 

  • Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta, 70(19): 5 013–5 034.

    Google Scholar 

  • Xu Y G, Menzies M A, Vroon P, Mercier J C, Lin C Y. 1998. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology, 39(3): 469–493.

    Google Scholar 

  • Yan Q S, Shi X F. 2014. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review. Acta Oceanologica Sinica, 33(4): 1–12.

    Google Scholar 

  • Yang J H, O’Reilly S, Walker R J, Griffin W, Wu F Y, Zhang M, Pearson N. 2010. Diachronous decratonization of the Sino-Korean Craton: geochemistry of mantle xenoliths from North Korea. Geology, 38(9): 799–802.

    Google Scholar 

  • Yang K H, Scott S D. 2002. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the Eastern Manus Back-arc Basin, western Pacific. Economic Geology, 97(5): 1 079–1 100.

    Google Scholar 

  • Ying J F, Zhang H F, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of late cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth and PlanetaryScience Letters, 244(3–4): 622–638.

    Google Scholar 

  • Yu S Y, Xu Y G, Ma J L, Zheng Y F, Kuang Y S, Hong L B, Ge W C, Tong L X. 2010. Remnants of oceanic lower crust in the subcontinental lithospheric mantle: trace element and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China. Earth and PlanetaryScience Letters, 297(3–4): 413–422.

    Google Scholar 

  • Zeng Z G, Chen S, Wang X Y, Ouyang H G, Yin X B, Li Z X. 2012. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin. Science China: Earth Sciences, 55: 2 039–2 048. (in Chinese)

    Google Scholar 

  • Zhai S K. 1986. The distribution and mineralogical characteristics of the pumice in the Okinawa trough. Oceanologia et Limnologia Sinica, 17(6): 504–512. (in Chinese with English abstract)

    Google Scholar 

  • Zhao W X, Yu L F, Chen J L, Guo Q, Wang B D. 2011. The zoning structure of clinopyroxene phenocrysts in the Miocene sodium analcime (nepheline) phonolite in Mibale area, Tibet: Implications for the magmatic and tectonic evolution. Acta Petrologica Sinica, 27(7): 2 073–2 082. (in Chinese with English abstract)

    Google Scholar 

  • Zhao X, Huang P, Hu N J, Kong J J, Liao R Q. 2017. Magma source and evolution of high-Mg andesite from eastern Manus Basin—geochemical and isotopic constraints. Oceanologia et Limnologia Sinica, 48(1): 8–21. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgment

We appreciate LAI Zhiqing from the Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao, China for his efforts on our experiments. We also thank LIU Mu from the Research Institute of Uranium Geology, China National Nuclear Corporation, Beijing; YIN Xuebo from the Institute of Oceanology, Chinese Academy of Sciences; and LIANG Xinrong from the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, for their help in XRF, ICP-MS, and MC-ICP-MS analyses. Meanwhile, we express our gratitude to the crews of the R/V Science during the Cruise 201501 for their efforts on obtaining samples. In addition, we appreciate the anonymous reviewers and Dr. CHEN for their careful work and thoughtful suggestions that have helped improve this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Additional information

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article and its electronic supplementary files. And the data in this study are also available from the authors upon reasonable request.

Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB42020303, XDA11030302), the National Natural Science Foundation of China (No. 41576055), and the National Basic Research Program of China (973 Program) (No. 2013CB429702)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Tian, L., Sun, J. et al. Petrogenesis of volcanic rocks from Eastern Manus Basin: indications in mineralogy and geochemistry. J. Ocean. Limnol. 39, 89–109 (2021). https://doi.org/10.1007/s00343-020-9308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-9308-1

Keyword

Navigation