Construction of the first high-density genetic map for growth related QTL analysis in Ancherythroculter nigrocauda

Abstract

Ancherythroculter nigrocauda is a fish endemic to the upper areas of the Changjiang (Yangtze) River in China. Quantitative trait locus (QTL) mapping is a powerful tool to identify potential genes affecting traits of economic importance in domestic animals. In this study, a high-density genetic map was constructed with 5 901 single nucleotide polymorphism (SNP) makers by sequencing 92 individual fish from a F1 family using the specific-locus amplified fragment sequencing approach. Initially, 48 QTLs for total length, body length, body height, and body weight were identified according to the high density of the genetic map with 24 LGs, a total length of 3 839.4 cM, and marker spacing of about 0.82 cM. These QTLs explained 27.1%–49.9% of phenotypic variance. The results of this study suggest that major QTLs are responsible for the growth of A. nigrocauda, and these are potentially useful in comparative genomics research, genome assembly, and marker-assisted breeding programs for this species.

This is a preview of subscription content, access via your institution.

References

  1. Andrews K R, Good J M, Miller M R, Luikart G, Hohenlohe P A. 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet., 17(2): 81–92.

    Article  Google Scholar 

  2. Bai Z Y, Han X K, Liu X J, Li Q Q, Li J L. 2016. Construction of a high-density genetic map and QTL mapping for pearl quality-related traits in Hyriopsis cumingii. Sci. Rep., 6: 32608.

  3. Baird N A, Etter P D, Atwood T S, Currey M C, Shiver A L, Lewis Z A, Selker E U, Cresko W A, Johnson E A. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoSOne, 3(10): e3376.

    Article  Google Scholar 

  4. Chakravarti A, Lasher L K, Reefer J E. 1991. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics, 128(1): 175–182.

    Google Scholar 

  5. Davey J W, Hohenlohe P A, Etter P D, Boone J Q, Catchen J M, Blaxter M L. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet., 12(7): 499–510.

    Article  Google Scholar 

  6. Dib C, Fauré S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Kazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J. 1996. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature, 380(6570): 152–154.

    Article  Google Scholar 

  7. Faris J D, Laddomada B, Gill B S. 1998. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics, 149(1): 319–327.

    Google Scholar 

  8. Feng X, Yu X M, Fu B D, Wang X H, Liu HY, Pang M X, Tong J G. 2018. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus). BMC Genomics, 19: 230.

    Article  Google Scholar 

  9. Fishman L, Kelly A J, Morgan E, Willis J H. 2001. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to hetero specific interactions. Genetics, 159(4): 1 701–1 716.

    Google Scholar 

  10. Fu B D, Liu H Y, Yu X M, Tong J G. 2016. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis). Sci. Rep., 6: 28 679.

    Article  Google Scholar 

  11. Gjedrem T. 2000. Genetic improvement of cold-water fish species. Aquac. Res., 31(1): 25–33.

    Article  Google Scholar 

  12. Guo J Q, Li C J, Teng T, Shen F F, Chen Y N, Wang Y F, Pan C L, Ling Q F. 2018. Construction of the first high-density genetic linkage map of pikeperch (Sander lucioperca) using specific length amplified fragment (SLAF) sequencing and QTL analysis of growth-related traits. Aquaculture, 497: 299–305.

    Article  Google Scholar 

  13. Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. 2011. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet., 44(1): 32–39.

    Article  Google Scholar 

  14. Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, Mizoguchi Y, Hirano T, Itoh T, Watanabe T, Reed K M, Snelling W M, Kappes S M, Beattie C W, Bennett G L, Sugimoto Y. 2004. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res., 14(10A): 1 987–1 998.

    Article  Google Scholar 

  15. Jansen J, de Jong A G, van Ooijen J W. 2001. Constructing dense genetic linkage maps. Theor. Appl. Genet., 102: 1 113–1 122.

    Article  Google Scholar 

  16. Kosambi D D. 1943. The estimation of map distances from recombination values. Ann. Eugen., 12(1): 172–175.

    Article  Google Scholar 

  17. Lallias D, Beaumont A R, Haley C S, Boudry P, Heurtebise S, Lapègue S. 2007. A first-generation genetic linkage map of the European flat oyster Ostreaedulis (L.) based on AFLP and microsatellite markers. Anim. Genet., 38(6): 560–568.

    Article  Google Scholar 

  18. Li L, Xiang J H, Liu X, Zhang Y, Dong B, Zhang X J. 2005. Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 245(1–4): 63–73.

    Article  Google Scholar 

  19. Li R Q, Li Y R, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5): 713–714.

    Article  Google Scholar 

  20. Liu C C, Gao X, Wang H S, Liu H Z, Cao W X, Danley P D. 2013. Reproductive characteristics of Ancherythroculter nigrocauda, an endemic fish in the upper Yangtze River, China. Fisheries Sci., 79(5): 799–806.

    Article  Google Scholar 

  21. Liu D Y, Ma C X, Hong W G, Huang L, Liu M, Liu H, Zeng H P, Deng D J, Xin H G, Song J, Xu C H, Sun X W, Hou X L, Wang X W, Zheng H K. 2014. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoSOne, 9(6): e98855.

    Article  Google Scholar 

  22. Liu H Y, Fu B D, Pang M X, Feng X, Yu X M, Tong J G. 2017. A high-density genetic linkage map and QTL fine mapping for body weight in crucian carp (Carassius auratus) using 2b-RAD sequencing. G3, 7(8): 2 473–2 487.

    Article  Google Scholar 

  23. Liu J K, Cao W X. 1992. Fish resources of the Yangtze River basin and the tactics for their conservation. Resour. Environ. Yangtze Basin, 1(1): 17–23. (in Chinese with English abstract)

    Google Scholar 

  24. Niu D H, Du Y C, Wang Z, Xie S M, Nguyen H, Dong Z G, Shen H D, Li J L. 2017. Construction of the first high-density genetic linkage map and analysis of quantitative trait loci for growth-related traits in Sinonovacula constricta. Mar. Biotechnol., 19(5): 488–496.

    Article  Google Scholar 

  25. Peng W Z, Xu J, Zhang Y, Feng J X, Dong C J, Jiang L K, Feng J Y, Chen B H, Gong Y W, Chen L, Xu P. 2016. An ultrahigh density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio). Sci. Rep., 6: 26 693.

    Article  Google Scholar 

  26. Peterson B K, Weber J N, Kay E H, Fisher H S, Hoekstra H E. 2012. Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoSOne, 7(5): e37135.

    Article  Google Scholar 

  27. Qiu G F, Xiong L W, Han Z K, Liu Z Q, Feng J B, Wu X G, Yan Y L, Shen H, Huang L, Chen L. 2017. A second generation SNP and SSR integrated linkage map and QTL mapping for the Chinese mitten crab Eriocheir sinensis. Sci. Rep., 7: 39 826.

    Article  Google Scholar 

  28. Sambrook J, Russell D W. 2001. Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York. p.463–446.

    Google Scholar 

  29. Shao C W, Niu Y C, Rastas P, Liu Y, Xie Z Y, Li H D, Wang L, Jiang Y, Tai S S, Tian Y S, Sakamoto T, Chen S L. 2015. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res., 22(2): 161–170.

    Article  Google Scholar 

  30. Singer A, Perlman H, Yan Y L, Walker C, Corley-Smith G, Brandhorst B, Postlethwait J. 2002. Sex-specific recombination rates in zebrafish (Danio rerio). Genetics, 160(2): 649–657.

    Google Scholar 

  31. Sun C F, Niu Y C, Ye X, Dong J J, Hu W S, Zeng Q K, Chen Z H, Tian Y Y, Zhang J, Lu M X. 2017. Construction of a high-density linkage map and mapping of sex determination and growth-related loci in the mandarin fish (Siniperca chuatsi). BMC Genomics, 18: 446.

    Article  Google Scholar 

  32. Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma C X, Zeng H P, Xu C H, Song J, Huang L, Wang C M, Shi J J, Wang R, Zheng X H, Lu C Y, Wang X W, Zheng H K. 2013. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoSOne, 8(3): e58700.

    Article  Google Scholar 

  33. Sun Y H, Li Q, Wang G Y, Zhu D M, Chen J, Li P. 2015. Development of transcript-associated microsatellite markers in Ancherythoculter nigrocauda and cross-amplification in Culter alburnus. Genet. Mol. Res., 14(4): 14 286–14 290.

    Article  Google Scholar 

  34. Sun Y H, Li Q, Wei H J, Wang G Y, Chen J, Li P. 2018. Single nucleotide polymorphism identification in growth-related genes from the transcriptome of the fish Ancherythroculter nigrocauda. Conserv. Genet. Resour., 10(2): 153–155.

    Article  Google Scholar 

  35. Sun Y H, Wang G Y, Zhu D M, Chen J, Li P, Li Q. 2014. Development of polymorphic microsatellite loci isolated from the Ancherythoculter nigrocauda. Conserv. Genet. Resour., 6(4): 919–923.

    Article  Google Scholar 

  36. Tong J G, Sun X W. 2015. Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish. Sci. China Life Sci., 58(2): 178–186.

    Article  Google Scholar 

  37. Van Ooijen J. 2011. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res., 93(5): 343–349.

    Article  Google Scholar 

  38. Van Os H, Stam P, Visser R G, van Eck H J. 2005. SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor. Appl. Genet., 112(1): 187–194.

    Article  Google Scholar 

  39. Voorrips R E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered., 93(1): 77–78.

    Article  Google Scholar 

  40. Wang L, Wan Z Y, Bai B, Huang S Q, Chua E, Lee M, Pang H Y, Wen Y F, Liu P, Liu F, Sun F, Lin G, Ye B Q, Yue G H. 2015. Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass. Sci. Rep., 5: 16 358.

    Article  Google Scholar 

  41. Wang S, Meyer E, McKay J K, Matz M V. 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods, 9(8): 808–810.

    Article  Google Scholar 

  42. Xia J H, Lin G, He X P, Yunping B, Liu P, Liu F, Sun F, Tu R J, Yue G H. 2014. Mapping quantitative trait loci for omega-3 fatty acids in Asian seabass. Mar. Biotechnol., 16(1): 1–9.

    Article  Google Scholar 

  43. Xu S Z. 2008. Quantitative trait locus mapping can benefit from segregation distortion. Genetics, 180(4): 2 201–2 208.

    Article  Google Scholar 

  44. Young W P, Wheeler P A, Coryell V H, Keim P, Thorgaard G H. 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 148(2): 839–850.

    Google Scholar 

  45. Yu Y, Zhang X J, Yuan J B, Li F H, Chen X H, Zhao Y Z, Huang L, Zheng H K, Xiang J H. 2015. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Sci. Rep., 5: 15 612.

    Article  Google Scholar 

  46. Yu Z N, Guo X M. 2003. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol. Bull., 204(3): 327–338.

    Article  Google Scholar 

  47. Yue G H. 2014. Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish and Fisheries, 15(3): 376–396.

    Article  Google Scholar 

  48. Zhang J, Zhang Q X, Cheng T R, Yang W R, Pan H T, Zhong J J, Huang L, Liu E Z. 2015. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunusmume Sieb. et Zucc). DNA Res., 22(3): 183–191.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jingou Tong or Qing Li.

Additional information

Supported by the Technical Innovation Project of Hubei Province (No. 2018ABA105) and the Enterprise Technology Innovation Project of Wuhan (No. 39 of 2019 WuKe)

Data Availability Statement

All data generated and/or analyzed during the study are available from the corresponding author on reasonable request.

Supplementary materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, P., Wang, G. et al. Construction of the first high-density genetic map for growth related QTL analysis in Ancherythroculter nigrocauda. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-9290-7

Download citation

Keywords

  • Ancherythroculter nigrocauda
  • specific-locus amplified fragment
  • high-density genetic map
  • quantitative trait locus