Chromosomal mapping of 5S and 18S-5.8S-25S rRNA genes in Saccharina japonica (Phaeophyceae) as visualized by dual-color fluorescence in situ hybridization

Abstract

It has been reported that there was a linkage of 5S rRNA gene to 18S-5.8S-25S rRNA gene in a few of species in Ochrophyta. In regard to the usual two positions of linked 5S rDNA to the 3′ end of 25S rDNA, two pairs of primers were designed for amplification to verify this linkage of two genes in a kelp cultivar of Saccharina japonica, one of species in Ochrophyta. This result supplemented the previous report that 5S rDNA was unlinked to 25S rDNA in this kelp. In order to simultaneously visualize this unlinkage of two genes, dual-color fluorescence in situ hybridization (FISH) technique was applied to the cytogenetics of S. japonica. Dual-color FISH images showed that two and four hybridization signals were present in the kelp gametophyte and sporophyte, respectively, metaphase nuclei hybridized simultaneously with the labeled probes of 18S rDNA and 5S rDNA. Both haploid and diploid karyotypes in decreasing length of chromosomes showed that 18S-5.8S-25S rDNA was localized at the interstitial region of Chromosome 23, whereas 5S rDNA resided at the sub-telomeric region of Chromosome 27. These karyotypes suggested that the kelp nuclear genome had only one locus of each rRNA gene, and their loci on different chromosomes indicated the physical unlinkage of 5S rDNA to 18S-5.8S-25S rDNA in this kelp. Therefore, dual-color FISH seems to be a powerful technique for the discrimination and pairing of chromosomes featured in both small size and nearly identical shape in S. japonica.

This is a preview of subscription content, access via your institution.

Abbreviations

CTAB:

cetyltrimethyl ammonium bromide

DAPI:

4′,6-diamidino-2-phenylindole

FISH:

fluorescence in situ hybridization

PCR:

polymerase chain reaction

rRNA:

ribosomal RNA

UV:

ultraviolet

References

  1. Barros e Silva A E, dos Santos Soares Filho W, Guerra M. 2013. Linked 5S and 45S rDNA sites are highly conserved through the subfamily Aurantioideae (Rutaceae). Cytogenetic and Genome Research, 140(1): 62–69, https://doi.org/10.1159/000350695.

    Article  Google Scholar 

  2. Bi Y H, Zhou Z G. 2014. What does the difference between the female and male gametophytes of Saccharina japonica remind us of? Algological Studies, 145–146: 65–79, https://doi.org/10.1127/1864-1318/2014/0145.

    Article  Google Scholar 

  3. Bouck G B. 1965. Fine structure and organelle associations in brown algae. The Journal of Cell Biology, 26(2): 523–537, https://doi.org/10.1083/jcb.26.2.523.

    Article  Google Scholar 

  4. Dai J X, Fang Z X. 1979. Cell division of the female gametophytes and juvenile sporophytes of Laminaria japonica. Periodical of Ocean University of China, 9(1): 123–127, https://doi.org/CNKI:SUN:QDHY.0.1979-01-010. (in Chinese with English abstract)

    Google Scholar 

  5. Drouin G, de Sá M M. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Molecular Biology and Evolution, 12(3): 481–493, https://doi.org/10.1093/oxfordjournals.molbev.a040223.

    Google Scholar 

  6. Galián J A, Rosato M, Rosselló J A. 2012. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity, 108(6): 640–646, https://doi.org/10.1038/hdy.2012.2.

    Article  Google Scholar 

  7. Garcia S, Garnatje T, Kovařík A. 2012. Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma, 121(4): 389–394, https://doi.org/10.1007/s00412-012-0368-7.

    Article  Google Scholar 

  8. Garcia S, Kovařík A. 2013. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity, 111(1): 23–33, https://doi.org/10.1038/hdy.2013.11.

    Article  Google Scholar 

  9. Garcia S, Kovařík A, Leitch A R, Garnatje T. 2017. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Plant Journal, 89(5): 1 020–1 030, https://doi.org/10.1111/tpj.13442.

    Article  Google Scholar 

  10. Garcia S, Lim K Y, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch A R, Kovařík A. 2009. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma, 118(1): 85–97, https://doi.org/10.1007/s00412-008-0179-z.

    Article  Google Scholar 

  11. Hu Y J, Zhou Z G. 2001. Extraction of RAPD-friendly DNA from Laminaria japonica (Phaeophyta) after enzymatic dissociation of the frozen sporophyte tissue. Journal of Applied Phycology, 13(5): 415–422, https://doi.org/10.1023/a:1011920213639.

    Article  Google Scholar 

  12. Jowett T. 1999. Two colour in situ hybridization. In: Wilkinson D G ed. In Situ Hybridization: A Practical Approach. 2nd edn. Oxford University Press, Oxford, UK. p.107–126.

    Google Scholar 

  13. Kawai H, Muto H, Fujii T, Kato A. 1995. A linked 5S rRNA gene in Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Journal of Phycology, 31(2): 306–311, https://doi.org/10.1111/j.0022-3646.1995.00306.x.

    Article  Google Scholar 

  14. Kawai H, Nakayama T, Inouye I, Kato A. 1997. Linkage of 5S ribosomal DNA to other rDNAs in the chromophytic algae and related taxa. Journal of Phycology, 33(3): 505–511, https://doi.org/10.1111/j.0022-3646.1997.00505.x.

    Article  Google Scholar 

  15. Liu L, Yang Q F, Dong W S, Bi Y H, Zhou Z G. 2017. Characterization and physical mapping of nuclear ribosomal RNA (rRNA) genes in the haploid gametophytes of Saccharina japonica (Phaeophyta). Journal of Applied Phycology, 29(5): 2 695–2 706, https://doi.org/10.1007/s10811-017-1206-3.

    Article  Google Scholar 

  16. Liu Y, Bi Y H, Gu J G, Li L H, Zhou Z G. 2012. Localization of a female-specific marker on the chromosomes of the brown seaweed Saccharina japonica using fluorescence in situ hybridization. PLoS One, 7(11): e48784, https://doi.org/10.1371/journal.pone.0048784.

    Article  Google Scholar 

  17. Long E O, Dawid I B. 1980. Repeated genes in eukaryotes. Annual Review of Biochemistry, 49: 727–764, https://doi.org/10.1146/annurev.bi.49.070180.003455.

    Article  Google Scholar 

  18. Paule M R, White R J. 2000. Transcription by RNA polymerases I and III. Nucleic Acids Research, 28(6): 1 283–1 298, https://doi.org/10.1093/nar/28.6.1283.

    Article  Google Scholar 

  19. Rigby P W J, Dieckmann M, Rhodes C, Berg P. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology, 113(1): 237–251, https://doi.org/10.1016/0022-2836(77)90052-3.

    Article  Google Scholar 

  20. Schweizer D. 1976. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma, 58(4): 307–324, https://doi.org/10.1007/BF00292840.

    Article  Google Scholar 

  21. Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. 2018. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma, 127(1): 141–150, https://doi.org/10.1007/s00412-017-0651-8.

    Article  Google Scholar 

  22. Sone T, Fujisawa M, Takenaka M, Nakagawa S, Yamaoka S, Sakaida M, Nishiyama R, Yamato K T, Ohmido N, Fukui K, Fukuzawa H, Ohyama K. 1999. Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Molecular Biology, 41(5): 679–685, https://doi.org/10.1023/a:1006398419556.

    Article  Google Scholar 

  23. Starr R C, Zeikus J A. 1993. UTEX-The culture collection of algae at the University of Texas at Austin 1993 List of cultures. Journal of Phycology, 29(S2): 1–106, https://doi.org/10.1111/j.0022-3646.1993.00001.x.

    Article  Google Scholar 

  24. Volkov R A, Komarova N Y, Hemleben V. 2007. Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Systematics and Biodiversity, 5(3): 261–276, https://doi.org/10.1017/S1477200007002447.

    Article  Google Scholar 

  25. Yotsukura N, Kawai T, Motomura T, Ichimura T. 2002. Tandem 5S ribosomal RNA genes and the spacer region sequences of three Japanese Laminaria species. Journal of Applied Phycology, 14(4): 233–239, https://doi.org/10.1023/a:1021166218681.

    Article  Google Scholar 

  26. Zhang P, Friebe B. 2009. FISH on plant chromosomes. In: Liehr T ed. Fluorescence in Situ Hybridization (FISH): Application Guide. Springer-Verlag, Berlin Heidelberg, Germany. p.365–394, https://doi.org/10.1007/978-3-540-70581-9_32.

    Google Scholar 

  27. Zhou Z G, Wu C Y. 1998. Clone culture of Laminaria japonica and induction of its sporophytes. Chinese Journal of Biotechnology, 14(1): 109–111, https://doi.org/CNKI: SUN: SHWU.0.1998-01-019. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhou.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41376136, 31201992) and the Double First-Class Discipline of Fisheries Science in China

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, P., Bi, Y. et al. Chromosomal mapping of 5S and 18S-5.8S-25S rRNA genes in Saccharina japonica (Phaeophyceae) as visualized by dual-color fluorescence in situ hybridization. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-9276-5

Download citation

Keyword

  • 5S rDNA
  • 18S-5.8S-25S rDNA
  • chromosome
  • fluorescence in situ hybridization (FISH)
  • kelp
  • linkage
  • locus