Mechanisms of high-frequency dinoflagellate blooms of Scrippsiella trochoidea in Daya Bay, South China Sea

Abstract

Harmful algal blooms (HABs), such as dinoflagellate blooms, have adverse effects on coastal water environments, causing seafood contamination and aquaculture economic losses. Based on historical HAB records data (1983–2017) and phytoplankton data (1982–2008), field investigation and laboratory experiments on frequently bloomed dinoflagellate species, we analyzed the possible mechanisms of high frequency dinoflagellate blooms in Daya Bay, South China Sea. The HAB records data show that the proportion of dinoflagellate blooms increased from 15% before 1994 to 77.27% after 2011. The bloom occurred mostly in summer (57.58%) in Yaling Bay (76.92%). The species inducing dinoflagellate blooms tended to be singular over time, with high proportion of Scrippsiella trochoidea (42.86%–88.88%). Laboratory experiment and field investigation of S. trochoidea bloom showed that this species grew rapidly at 30 °C and 32.1 °C (r=0.47, P<0.05), respectively. Results indicate that temperature rise in Yaling Bay was affected by nearby nuclear plant effluent, which favored the S. trochoidea bloom. Coincidently, nearly 70% of S. trochoidea blooms occurred in about 7 days after local spring tide and strong wind (wind velocity >7 m/s), which disturbed the resting cysts in the sediment and bring them into surface layer. Taking into account of environmental parameters, algae source, and atmospheric conditions, the probable mechanism of S. trochoidea bloom could be explained. The cysts were resuspended by the spring tide or strong wind, germinated at the bottom layer, reproduced rapidly at higher temperature, and then aggregated in the inner bay (Yaling Bay), resulting the frequent S. trochoidea bloom. Considering the influences of global warming and human activities, it should be taken more attention that dinoflagellate blooms might increase along the coastal waters.

This is a preview of subscription content, access via your institution.

References

  1. Adachi R. 1973. Red tide organisms and red tide. Fish Engineering, 9: 31–36. (in Japanese)

    Google Scholar 

  2. Alkawri A A S, Ramaiah N. 2010. Spatio-temporal variability of dinoflagellate assemblages in different salinity regimes in the west coast of India. Harmful Algae, 9(2): 153–162, https://doi.org/10.1016/j.hal.2009.08.012.

    Article  Google Scholar 

  3. Backer L C, McGillicuddy Jr D J. 2006. Harmful algal blooms at the interface between coastal oceanography and human health. Oceanography, 19(2): 94–106, https://doi.org/10.5670/oceanog.2006.72.

    Article  Google Scholar 

  4. Beardall J, Stojkovic S, Larsen S. 2009. Living in a high CO2 world: Impacts of global climate change on marine phytoplankton. Plant Ecology & Diversity, 2(2): 191–205, https://doi.org/10.1080/17550870903271363.

    Article  Google Scholar 

  5. Binder B J, Anderson D M. 1986. Green light-mediated photomorphogenesis in a dinoflagellate resting cyst. Nature, 322(6080): 659–661, https://doi.org/10.1038/322659a0.

    Article  Google Scholar 

  6. Burkholder J M, Glasgow Jr H B. 1997. Pfiesteria piscicida and other Pfiesreria-like dinoflagellates: Behavior, impacts, and environmental controls. Limnology and Oceanography, 42(5): 1 052–1 075, https://doi.org/10.4319/lo.1997.42.5_part_2.1052.

    Google Scholar 

  7. Cai Z P, Huang W W, An M, Duan S S. 2009. Coupled effects of irradiance and iron on the growth of a harmful algal bloom-causing microalga Scrippsiella trochoidea. Acta Ecologica Sinica, 29(5): 297–301, https://doi.org/10.1016/j.chnaes.2009.09.007.

    Article  Google Scholar 

  8. Edwards M, Richardson A J. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430(7002): 881–884, https://doi.org/10.1038/nature02808.

    Article  Google Scholar 

  9. Gárate-Lizárraga I, Band-Schmidt C J, López-Cortés D J, del Socorro Muñetón-Gómez M. 2009. Bloom of Scrippsiella trochoidea (Gonyaulacaceae) in a shrimp pond in the southwestern Gulf of California, Mexico. Marine Pollution Bulletin, 58(1): 145–149, https://doi.org/10.1016/j.marpolbul.2008.09.016.

    Article  Google Scholar 

  10. Glibert P M, Berdalet E, Burford M A, Pitcher G C, Zhou M J. 2018. Global Ecology and Oceanography of Harmful Algal Blooms. Springer, Cham. p.1–461, https://doi.org/10.1007/978-3-319-70069-4.

    Book  Google Scholar 

  11. Godhe A, Narayanaswamy C, Klais R, Moorthy K S V, Ramesh R, Rai A, Reddy H R V. 2015. Long-term patterns of net phytoplankton and hydrography in coastal SE Arabian Sea: what can be inferred from genus level data? Estuarine, Coastal and Shelf Science, 162: 69–75, https://doi.org/10.1016/j.ecss.2015.03.006.

    Article  Google Scholar 

  12. Hallegraeff G M. 1992. Harmful algal blooms in the Australian region. Marine Pollution Bulletin, 25(5–8): 186–190, https://doi.org/10.1016/0025-326X(92)90223-S.

    Article  Google Scholar 

  13. Hameed H A, Saburova M. 2015. First record of Scrippsiella trochoidea (Dinophyceae) in Shatt Al-Arab River (Southern Iraq). Marine Biodiversity Records, 8: e150, https://doi.org/10.1017/S1755267215001281.

    Article  Google Scholar 

  14. Han W Y. 1998. Marine Chemistry in South China Sea. Science Press, Beijing. p.1–289. (in Chinese)

    Google Scholar 

  15. Han W Y, Ma K M. 1991. Study on the process of sea water exchang in Daya Bay. Marine Sciences, (2): 64–67. (in Chinese with English abstract)

    Google Scholar 

  16. Hao Y J, Tang D L, Boicenco L, Wang S F. 2016. Environmental ecological response to increasing water temperature in the Daya Bay, Southern China in 1982–2012. Natural Resources, 7(4): 184–192, https://doi.org/10.4236/nr.2016.74017.

    Article  Google Scholar 

  17. Hinder S L, Hays G C, Edwards M, Roberts E C, Walne A W, Gravenor M B. 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change, 2(4): 271–275, https://doi.org/10.1038/nclimate1388.

    Article  Google Scholar 

  18. Huan Q L, Pang R S, Zhou Q L, Leng K M. 2016. Variation trends of nitrogen and phosphorus and the relationship with HABs in Shenzhen coastal waters. Marine Environmental Science, 35(6): 908–914. (in Chinese with English abstract)

    Google Scholar 

  19. Huang X P, Huang L M, Tan Y H, Zhu L S. 2002. Relationship between red tide and environmental conditions in coastal waters. Marine Environmental Science, 21(4): 63–69, https://doi.org/10.3969/j.issn.1007-6336.2002.04.015. (in Chinese with English abstract)

    Google Scholar 

  20. IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  21. Jiang Z B, Liao Y B, Liu J J, Shou L, Chen Q Z, Yan X J, Zhu G H, Zeng J N. 2013. Effects of fish farming on phytoplankton community under the thermal stress caused by a power plant in a eutrophic, semi-enclosed bay: induce toxic dinoflagellate (Prorocentrum minimum) blooms in cold seasons. Marine Pollution Bulletin, 76(1–2): 315–324, https://doi.org/10.1016/j.marpolbul.2013.07.006.

    Article  Google Scholar 

  22. Jones K J, Gowen R J. 1990. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuarine, Coastal and Shelf Science, 30(6): 557–567, https://doi.org/10.1016/0272-7714(90)90092-6.

    Article  Google Scholar 

  23. Kang D J, Fringer O. 2010. On the calculation of available potential energy in internal wave fields. Journal of Physical Oceanography, 40(11): 2 539–2 545, https://doi.org/10.1175/2010JPO4497.1.

    Article  Google Scholar 

  24. Keys M, Tilstone G, Findlay H S, Widdicombe C E, Lawson T. 2018. Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel. Biogeosciences, 15(10): 3 203–3 222, https://doi.org/10.5194/bg-15-3203-2018.

    Article  Google Scholar 

  25. Kim Y O, Han M S. 2000. Seasonal relationships between cyst germination and vegetative population of Scrippsiella trochoidea (Dinophyceae). Marine Ecology Progress Series, 204: 111–118, https://doi.org/10.3354/meps204111.

    Article  Google Scholar 

  26. Knap A H, Michaels A, Close A R, Ducklow H, Dickson A G. 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. UNESCO, Bergen.

    Google Scholar 

  27. Kumar P S, Kumaraswami M, Rao G D, Ezhilarasan P, Sivasankar R, Rao V R, Ramu K. 2018. Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea. Continental Shelf Research, 161: 20–28, https://doi.org/10.1016/j.csr.2018.04.012.

    Article  Google Scholar 

  28. Li L, Lü S H, Cen J Y. 2019. Spatio-temporal variations of Harmful algal blooms along the coast of Guangdong, Southern China during 1980–2016. Journal of Oceanology and Limnology, 37(2): 535–551, https://doi.org/10.1007/s00343-019-8088-y.

    Article  Google Scholar 

  29. Li T, Liu S, Huang L M, Huang H, Lian J S, Yan Y, Lin S J. 2011. Diatom to dinoflagellate shift in the summer phytoplankton community in a bay impacted by nuclear power plant thermal effluent. Marine Ecology Progress Series, 424: 75–85, https://doi.org/10.3354/meps08974.

    Article  Google Scholar 

  30. Licea S, Zamudio M E, Luna R, Okolodkov Y, Gómez-Aguirre S. 2004. Toxic and harmful dinoflagellates in the southern Gulf of México. In Steidinger K A, Landsberg J H, Tomas C R, Vargo G A eds. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO, St. Petersburg. p.380–382.

    Google Scholar 

  31. Lin G H, Dong Y R, Li K Q, Wang S P, Wang X L. 2017. The method to identity the key control factor of red tide: a case study of Bohai Sea. Periodical of Ocean University of China, 47(12): 88–96, https://doi.org/10.16441/j.cnki.hdxb.20160287. (in Chinese with English abstract)

    Google Scholar 

  32. Lin J N, Yan T, Zhang Q C, Wang Y F, Liu Q, Zhou M J. 2014. In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Marine Pollution Bulletin, 88(1–2): 302–310, https://doi.org/10.1016/j.marpolbul.2014.08.026.

    Article  Google Scholar 

  33. Lin X, Zhang H, Huang B Q, Lin S J. 2012. Alkaline phosphatase gene sequence characteristics and transcriptional regulation by phosphate limitation in Karenia brevis (Dinophyceae). Harmful Algae, 17: 14–24, https://doi.org/10.1016/j.hal.2012.02.005.

    Article  Google Scholar 

  34. Lin Z X, Liang S H. 2002. Study and forecasting on red tide caused by marine physical factors. Mar. Environ. Sci., 21(2): 1–5. (in Chinese with English abstract)

    Google Scholar 

  35. Liu D Y, Sun J, Zou J Z, Zhang J. 2005. Phytoplankton succession during a red tide of Skeletonema costatum in Jiaozhou Bay of China. Marine Pollution Bulletin, 50(1): 91–94, https://doi.org/10.1016/j.marpolbul.2004.11.016.

    Article  Google Scholar 

  36. Lu D D, Goebel J. 2001. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu SP. nov. from the east china sea. Chinese Journal of Oceanology and Limnology, 19(4): 337–344, https://doi.org/10.1007/BF02850738.

    Article  Google Scholar 

  37. Mulholland M R, Morse R, Egerton T, Bernhardt P W, Filippino K C. 2018. Blooms of dinoflagellate mixotrophs in a lower Chesapeake Bay tributary: carbon and nitrogen uptake over diurnal, seasonal, and interannual timescales. Estuaries and Coasts, 41(6): 1 744–1 765, https://doi.org/10.1007/s12237-018-0388-5.

    Article  Google Scholar 

  38. Qi Y Z, Zheng L, Wang R. 1997. The life cycle of Scrippsiella trochoidea and its physiol-ecological control. Oceanologia et Limnologia Sinica, 28(6): 588–593. (in Chinese with English abstract)

    Google Scholar 

  39. Qian H L, Liang S, Qi Y Z. 2000. Study of the characteristics and the causes of formation on the red tides in coastal Guangdong sea. Ecologic Science, 19(3): 8–16, https://doi.org/10.3969/j.issn.1008-8873.2000.03.002. (in Chinese with English abstract)

    Google Scholar 

  40. Shin H H, Li Z, Yoon Y H, Oh S J, Lim W A. 2017. Formation and germination of temporary cysts of Cochlodinium polykrikoides Margalef (Dinophyceae) and their ecological role in dense blooms. Harmful Algae, 66: 57–64, https://doi.org/10.1016/j.hal.2017.05.002.

    Article  Google Scholar 

  41. Smayda T J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 42(5): 1 137–1 153, https://doi.org/10.4319/lo.1997.42.5_part_2.1137.

    Article  Google Scholar 

  42. Smayda T J, Reynolds C S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. Journal of Sea Research, 49(2): 95–106, https://doi.org/10.1016/S1385-1101(02)00219-8.

    Article  Google Scholar 

  43. Sun J, Ning X R. 2005. Marine phytoplankton specific growth rate. Advances in Earth Science, 20(9): 939–945, https://doi.org/10.3321/j.issn:1001-8166.2005.09.003. (in Chinese with English abstract)

    Google Scholar 

  44. Sun X X, Sun S, Zhao Z X, Shen Z L. 2011. Long-term changes in nutrient concentration and structure in the Jiaozhou Bay. Oceanologia et Limnologia Sinica, 42(5): 662–669. (in Chinese with English abstract)

    Google Scholar 

  45. Tang D L, Kester D R, Wang Z D, Lian J S, Kawamura H. 2003. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China. Remote Sensing of Environment, 84(4): 506–515, https://doi.org/10.1016/S0034-4257(02)00149-9.

    Article  Google Scholar 

  46. Tang Y N. 2018. Distribution of Dinoflagellate Cysts in the Daya Bay and its Relations to Environmental Factors. University of Chinese Academy of Sciences, p.1–67. (in Chinese with English abstract)

  47. Tang Y Z, Gobler C J. 2015. Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea: a potential mechanism contributing to the ubiquitous distribution of a harmful alga. Journal of Phycology, 51(2): 298–309, https://doi.org/10.1111/jpy.12274.

    Article  Google Scholar 

  48. Tian Y, Li T, Hu S M, Xie X D, Liu S. 2020. Temporal and spatial characteristics of Harmful algal blooms in Guangdong coastal area. Marine Environmental Science, 39(1): 1–8. (in Chinese with English abstract)

    Google Scholar 

  49. Townhill B L, Tinker J, Jones M, Pitois S, Creach V, Simpson S D, Dye S, Bear E, Pinnegar J K. 2018. Harmful algal blooms and climate change: exploring future distribution changes. ICES Journal of Marine Science, 75(6): 1 882–1 893, https://doi.org/10.1093/icesjms/fsy113.

    Article  Google Scholar 

  50. Wang C, Lin J, Chen P M, Zhang S Y. 2008. Numerical simulation on water exchange in Daya Bay. South China Fisheries Science, 4(4): 8–15, https://doi.org/10.3969/j.issn.2095-0780.2008.04.002. (in Chinese with English abstract)

    Google Scholar 

  51. Wang C, Lin J, Chen P M, Zhang S Y. 2009. Numerical simulation of annual average wind’s impact on water exchange in Daya Bay. Journal of Shanghai University, 18(3): 351–358. (in Chinese with English abstract)

    Google Scholar 

  52. Wang Y S, Sun C C, Lou Z P, Wang H L, Mitchell B G, Wu M L, Sun Z X. 2011. Identification of water quality and benthos characteristics in Daya Bay, China, from 2001 to 2004. Oceanological and Hydrobiological Studies, 40(1): 82–95, https://doi.org/10.2478/s13545-011-0009-4.

    Article  Google Scholar 

  53. Wang Z H, Qi Y Z, Jiang T J, Xu Z N. 2004. Vertical distribution of dinoflagellate resting cysts in recent sediments from Daya Bay, the south china sea. Acta Hydrobiologica Sinica, 28(5): 504–510, https://doi.org/10.3321/j.issn:1000-3207.2004.05.008. (in Chinese with English abstract)

    Google Scholar 

  54. Wang Z H, Qi Y Z, Yang Y F. 2007. Cyst formation: an important mechanism for the termination of Scrippsiella trochoidea (Dinophyceae) bloom. Journal of Plankton Research, 29(2): 209–218, https://doi.org/10.1093/plankt/fbm008.

    Article  Google Scholar 

  55. Wells M L, Trainer V L, Smayda T J, Karlson B S O, Trick C G, Kudela R M, Ishikawa A, Bernard S, Wulff A, Anderson D M. 2015. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae, 49: 68–93, https://doi.org/10.1016/j.hal.2015.07.009.

    Article  Google Scholar 

  56. Xiao W P, Liu X, Irwin A J, Laws E A, Wang L, Chen B Z, Zeng Y, Huang B Q. 2018. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Research, 128:206–216, https://doi.org/10.1016/j.watres.2017.10.051.

    Article  Google Scholar 

  57. Xiao Y Z, Qi Y Z, Wang Z H, Lü S H. 2001. The relationship between Scrippsiella trochoidea red tide and cysts in the Daya Bay. Marine Sciences/Monthly, 25(9): 50–54, https://doi.org/10.3969/j.issn.1000-3096.2001.09.017. (in Chinese with English abstract)

    Google Scholar 

  58. Xiao Y Z, Wang Z H, Chen J F, Lü S H, Qi Y Z. 2003. Seasonal dynamics of dinoflagellate cysts in sediments from Daya Bay, the South China Sea its relation to the bloom of Scrippsiella trochoidea. Acta Hydrobiologica Sinica, 27(4): 372–377, https://doi.org/10.3321/j.issn:1000-3207.2003.04.008. (in Chinese with English abstract)

    Google Scholar 

  59. Xie Y H, Li T, Jian W J, Hu S M, Tian Y, Liu S. 2015. Influence of ocean warming on the community structure and photosynthetic efficiency of phytoplankton in Daya Bay. Journal of Tropical Oceanography, 34(2): 24–31, https://doi.org/10.3969/j.issn.1009-5470.2015.02.004. (in Chinese with English abstract)

    Google Scholar 

  60. Xu N, Lü S H, Chen J F, He L S, Xie L C, Qi Y Z. 2004. The influence of water temperature and salinity on the growth of Scrippsiella trochoidea. Marine Environmental Science, 23(3): 36–38, https://doi.org/10.3969/jissn.1007-6336.2004.03.011. (in Chinese with English abstract)

    Google Scholar 

  61. Xu N, Pang S J. 2012. Molecular identification and culture trials of three marine microalgae. Marine Sciences, 36(10): 13–25. (in Chinese with English abstract)

    Google Scholar 

  62. Yin K D, Song X X, Liu S, Kan J J, Qian P Y. 2008. Is inorganic nutrient enrichment a driving force for the formation of red tides?: A case study of the dinoflagellate Scrippsiella trochoidea in an embayment. Harmful Algae, 8(1): 54–59, https://doi.org/10.1016/j.hal.2008.08.004.

    Article  Google Scholar 

  63. Yu J, Tang D L, Oh I S, Yao L J. 2007. Response of harmful algal blooms to environmental changes in Daya Bay, China. Terrestrial, Atmospheric and Oceanic Sciences Journal, 18(5): 1 011–1 027, https://doi.org/10.3319/TAO.2007.18.5.1011(Oc).

    Google Scholar 

  64. Zhou Z X, Yu R C, Zhou M J. 2017. Resolving the complex relationship between harmful algal blooms and environmental factors in the coastal waters adjacent to the Changjiang River estuary. Harmful Algae, 62: 60–72, https://doi.org/10.1016/j.hal.2016.12.006.

    Article  Google Scholar 

Download references

Acknowledgment

The reviewers are greatly acknowledged for their constructive comments, which vastly improved this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tao Li or Sheng Liu.

Additional information

Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDA13020102, XDA13020104), the National Key Research and Development Project of China (Nos. 2016YFC0502800, 2017YFC0506302), the National Natural Science Foundation of China (No. 41806188), and the Science and Technology Planning Project of Guangdong Province, China (Nos. 2015A020216013, 2017B0303014052)

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Hu, S., Lin, X. et al. Mechanisms of high-frequency dinoflagellate blooms of Scrippsiella trochoidea in Daya Bay, South China Sea. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-9082-0

Download citation

Keyword

  • harmful algal blooms
  • dinoflagellate
  • Daya Bay
  • Scrippsiella trochoidea