Development of organelle single nucleotide polymorphism (SNP) markers and their application for the identification of cytoplasmic inheritance patterns in Pyropia yezoensis (Bangiales, Rhodophyta)

Abstract

The genus Pyropia contains several important cultivated species. Genetic research in nori species has mainly focused on the cell nucleus, with few studies on organelles (chloroplast and mitochondria). Due to the high copy numbers of organelles in cells, which influence the development and traits of algae, it is necessary to study their genetic mechanism. In this study, the marine red alga Pyropia yezoensis, an important economic macroalga, was selected as the study object. To investigate organelle (chloroplast and mitochondria) inheritance in P. yezoensis, the wild type RZ (maternal strain) was crossed with the red mutant HT (paternal strain) and 30 color-sectors from 11 F1 gametophytic blades were examined. The complete chloroplast and mitochondrial genomes of the red mutant (HT) were assembled for the first time. One reliable and stable single nucleotide polymorphism (SNP) loci filtrated by bioinformatics analysis was used as a molecular marker for chloroplast and mitochondrial DNA, respectively, in subsequent experiments. PCR amplification and sequence analysis showed that the haplotypes of color-sectors detected were consistent with those of the maternal parent, confirming that both chloroplast and mitochondrial genomes were inherited maternally in P. yezoensis. The inheritance pattern of organelles in P. yezoensis can be used to guide the hybridization and breeding of nori. Additionally, the organelle SNP markers developed in this study can be applied in subsequent genetic research.

This is a preview of subscription content, access via your institution.

References

  1. Avise J C, Arnold J, Ball Jr R M et al. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18: 489–522, https://doi.org/10.1146/annurev.es.18.110187.002421.

    Google Scholar 

  2. Avise J C. 1994. Molecular Markers: Natural History, and Evolution. Chapman and Hall, New York.

    Google Scholar 

  3. Bankevich A, Nurk S, Antipov D et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5): 455–477, https://doi.org/10.1089/cmb.2012.0021.

    Google Scholar 

  4. Bendich A J. 2013. DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts. Chromosome Research, 21(3): 287–296, https://doi.org/10.1007/s10577-013-9349-9.

    Google Scholar 

  5. Birky C W. 2001. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annual Review of Genetics, 35: 125–148, https://doi.org/10.1146/annurev.genet.35.102401.090231.

    Google Scholar 

  6. Blouin N A, Brodie J A, Grossman A C et al. 2011. Porphyra: a marine crop shaped by stress. Trends in Plant Science, 16(1): 29–37, https://doi.org/10.1016/j.tplants.2010.10.004.

    Google Scholar 

  7. Choi J W, Graf L, Peters A F et al. 2020. Organelle inheritance and genome architecture variation in isogamous brown algae. Scientific Reports, 10(1): 1–12, https://doi.org/10.1038/s41598-020-58817-7.

    Google Scholar 

  8. Choi S J, Park E J, Endo H et al. 2008. Inheritance pattern of chloroplast and mitochondrial genomes in artificial hybrids of Porphyra yezoensis (Rhodophyta). Fisheries Science, 74(4): 822–829, https://doi.org/10.1111/j.1444-2906.2008.01594.x.

    Google Scholar 

  9. Coyer J A, Peters A F, Hoarau G et al. 2002. Inheritance patterns of ITS1, chloroplasts and mitochondria in artificial hybrids of the seaweeds Fucus serratus and F. evanescens (Phaeophyceae). European Journal of Phycology, 37: 173–178, https://doi.org/10.1017/S0967026202003682.

    Google Scholar 

  10. Greiner S, Sobanski J, Bock R. 2015. Why are most organelle genomes transmitted maternally? BioEssays, 37: 80–94, https://doi.org/10.1002/bies.201400110.

    Google Scholar 

  11. Hawkes M W. 1978. Sexual reproduction in Porphyra gardneri (Smith et Hollenberg) Hawkes (Bangiales, Rhodophyta). Phycologia, 17: 329–353.

    Google Scholar 

  12. Huang L B, Yan X H. 2019. Construction of a genetic linkage map in Pyropia yezoensis (Bangiales, Rhodophyta) and QTL analysis of several economic traits of blades. PLoS One, 14(3): e0209128, https://doi.org/10.1371/journal.pone.0209128.

    Google Scholar 

  13. Hwang M S, Kim S O, Ha D S et al. 2013. Complete sequence and genetic features of the mitochondrial genome of Pyropia tenera (Rhodophyta). Plant Biotechnology Reports, 7(4): 435–443, https://doi.org/10.1007/s11816-013-0281-4.

    Google Scholar 

  14. Isoda K, Shiraishi S, Watanabe S et al. 2000. Molecular evidence of natural hybridization between Abies veitchii and A. homolepis (Pinaceae) revealed by chloroplast, mitochondrial and nuclear DNA markers. Molecular Ecology, 9(12): 1 965–1 974, https://doi.org/10.1046/j.1365-294X.2000.01088.x.

    Google Scholar 

  15. Johannessen M M, Andersen B A, Damgaard C et al. 2005. Maternal inheritance of chloroplasts between Brassica rapa and F1-hybrids demonstrated by cpDNAmarkers specific to oilseed rape and B. rapa. Molecular Breeding, 16: 271–278, https://doi.org/10.1007/s11032-005-0236-8.

    Google Scholar 

  16. Kato Y, Kogame K, Nagasato C et al. 2006. Inheritance of mitochondrial and chloroplast genomes in the isogamous brown alga Scytosiphon lomentaria (Phaeophyceae). Phycological Research, 54: 65–71, https://doi.org/10.1111/j.1440-1835.2006.00409.x.

    Google Scholar 

  17. Kong F N, Sun P P, Cao M et al. 2014. Complete mitochondrial genome of Pyropia yezoensis: reasserting the revision of genus Porphyra. Mitochondrial DNA, 25(5): 335–336, https://doi.org/10.3109/19401736.2013.803538.

    Google Scholar 

  18. Kurtz S, Phillippy A, Delcher A L et al. 2004. Versatile and open software for comparing large genomes. Genome Biology, 5(2): R12, https://doi.org/10.1186/gb-2004-5-2-r12.

    Google Scholar 

  19. Langmead B, Trapnell C, Pop M et al. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3): 1–10, https://doi.org/10.1186/gb-2009-10-3-r25.

    Google Scholar 

  20. Li H, Handsaker B, Wysoker A et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2 078–2 079, https://doi.org/10.1093/bioinformatics/btp352.

    Google Scholar 

  21. Li Q Y, Wang X L, Zhang J et al. 2016. Maternal inheritance of organellar DNA demonstrated with DNA markers in crosses of Saccharina japonica (Laminariales, Phaeophyta). Journal of Applied Phycology, 28: 2 019–2 026, https://doi.org/10.1007/s10811-015-0687-1.

    Google Scholar 

  22. Martin, M. 2011. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet Journal, 17: 10–12, https://doi.org/10.14806/ej.17.1.200.

    Google Scholar 

  23. Miyamura S. 2010. Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type. Journal of Plant Research, 123: 171–184, https://doi.org/10.1007/s10265-010-0309-6.

    Google Scholar 

  24. Morgensen H L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. American Journal of Botany, 83(3): 383–404, https://doi.org/10.1002/j.1537-2197.1996.tb12718.x.

    Google Scholar 

  25. Moritz C, Dowling T E, Brown W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology & Systematics, 18(1): 269–292, https://doi.org/10.1146/annurev.es.18.110187.001413.

    Google Scholar 

  26. Motomura T, Nagasato C, Kimura K. 2010. Cytoplasmic inheritance of organelles in brown algae. Journal of Plant Research, 123: 185–192, https://doi.org/10.1007/s10265-010-0313-x.

    Google Scholar 

  27. Niwa K, Kobiyama A, Sakamoto T. 2010. Interspecific hybridization in the haploid blade-forming marine crop Porphyra (Bangiales, Rhodophyta): occurrence of allodiploidy in surviving F1 gametophytic blades. Journal of Phycology, 46(4): 693–702, https://doi.org/10.1111/j.1529-8817.2010.00853.x.

    Google Scholar 

  28. Niwa K, Yamamoto T, Furuita H et al. 2011. Mutation breeding in the marine crop Porphyra yezoensis (Bangiales, Rhodophyta): cultivation experiment of the artificial red mutant isolated by heavy-ion beam mutagenesis. Aquaculture, 314(1-4): 182–187, https://doi.org/10.1016/j.aquaculture.2011.02.007.

    Google Scholar 

  29. Niwa K. 2010. Genetic analysis of artificial green and red mutants of Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Aquaculture, 308(1-2): 6–12, https://doi.org/10.1016/j.aquaculture.2010.08.007.

    Google Scholar 

  30. Peters A F, Scornet D, Müller D G et al. 2004. Inheritance of organelles in artificial hybrids of the isogamous multicellular chromist alga Ectocarpus siliculosus (Phaeophyceae). European Journal of Phycology, 39: 235–242, https://doi.org/10.1080/09670260410001683241.

    Google Scholar 

  31. Rebound X, Zeyl C. 1994. Organelle inheritance in plants. Heredity, 72: 137–140, https://doi.org/10.1038/hdy.1994.19.

    Google Scholar 

  32. Sahoo D, Tang X, Yarish C. 2002. Porphyra—the economic seaweed as a new experimental system. Current Science, 83(11): 1 313–1 316.

    Google Scholar 

  33. Sutherland J E, Lindstrom S C, Nelson W A et al. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). Journal of Phycology, 47(5): 1 131–1 151, https://doi.org/10.1111/j.1529-8817.2011.01052.x.

    Google Scholar 

  34. Walker B J, Abeel T, Shea T et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9(11): e112963, https://doi.org/10.1371/journal.pone.0112963.

    Google Scholar 

  35. Wang L, Mao Y X, Kong F N et al. 2013. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS One, 8(5): e65902, https://doi.org/10.1371/journal.pone.0065902.

    Google Scholar 

  36. Wilson K G, Vaughn K C. 1979. Organelle destruction, a new mechanism to explain maternal inheritance of plastids and mitochondria in higher-plants. Plant Physiology, 63: 5.

    Google Scholar 

  37. Wu H L, Kim J K, Huo Y Z et al. 2017. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China’s radial sandbanks. Aquatic Botany, 137: 72–79, https://doi.org/10.1016/j.aquabot.2016.11.011.

    Google Scholar 

  38. Yan X H, Aruga Y. 2000. Genetic analysis of artificial pigmentation mutants in Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Phycological Research. 48(3): 177–187, https://doi.org/10.1046/j.1440-1835.2000.00203.x.

    Google Scholar 

  39. Yu X Z, Wang L, Xu K P et al. 2020. Fine mapping to identify the functional genetic locus for red coloration in Pyropia yezoensis thallus. Frontiers in Plant Science, 11: 867, https://doi.org/10.3389/fpls.2020.00867.

    Google Scholar 

  40. Zhang Q, Liu Y, Sodmergen. 2003. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant & Cell Physiology, 44: 941–951, https://doi.org/10.1111/j.1574-695X.2008.00405.x.

    Google Scholar 

  41. Zhong Z R, Li N, Qian D et al. 2011. Maternal inheritance of plastids and mitochondria in Cycas L. (Cycadaceae). Molecular Genetics & Genomics, 286: 411–416, https://doi.org/10.1007/s00438-011-0653-9.

    Google Scholar 

  42. Zuccarello G C, Burger G, West J A et al. 1999a. A mitochondrial marker for red algal intraspecific relationships. Molecular Ecology, 8: 1 443–1 447, https://doi.org/10.1046/j.1365-294x.1999.00710.x.

    Google Scholar 

  43. Zuccarello G C, West J A, Kamiya M et al. 1999b. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia, 401: 207–214, https://doi.org/10.1023/A:1003706931897.

    Google Scholar 

  44. Zuccarello G C, West J A. 2011. Insights into evolution and speciation in the red alga Bostrychia: 15 years of research. Economic & Environmental Geology, 26(1): 21–32, https://doi.org/10.4490/algae.2011.26.1.021.

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xianghai Tang or Yunxiang Mao.

Additional information

Supported by the National Key R&D Program of China (Nos. 2018YFD0900106, 2018YFC1406700), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2018SDKJ0302-4), and the MOA Modern Agricultural Talents Support Project

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, J., Zhu, Y. et al. Development of organelle single nucleotide polymorphism (SNP) markers and their application for the identification of cytoplasmic inheritance patterns in Pyropia yezoensis (Bangiales, Rhodophyta). J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0298-9

Download citation

Keyword

  • Pyropia yezoensis
  • organelle single nucleotide polymorphism (SNP) markers
  • chloroplast
  • mitochondrial
  • organelle inheritance
  • maternal inheritance