Climatology and seasonal variability of satellite-derived chlorophyll a around the Shandong Peninsula

Abstract

The chlorophyll a (Chl a) is an important indicator of marine ecosystems. The spatiotemporal variation of the Chl a greatly affects the mariculture and marine ranching in coastal waters of the Shandong Peninsula. In the current study, the climatology and seasonal variability of surface Chl-a concentration around the Shandong Peninsula are investigated based on 16 years (December 2002-November 2018) of satellite observations. The results indicate that the annual mean Chl-a concentration is greater in the Bohai Sea than in the Yellow Sea and decreases from coastal waters to offshore waters. The highest Chl-a concentrations are found in Laizhou Bay (4.2`-8.0 mg/m3), Haizhou Bay (4.2`-5.9 mg/m3) and the northeast coast of the Shandong Peninsula (4.4`-5.0 mg/m3), resulting from the combined effects of the intense riverine input and long residence time caused by the concave shape of the coastline. The seasonal Chl-a concentration shows a significant spatial variation. The Chl-a concentrations in these three subregions generally exhibit an annual maximum in August/September, due to the combined effects of sea surface temperature, river discharge and sea surface wind. In the southeast coast region, however, the Chl-a concentration is lowest throughout the year and reaches a maximum in February with a minimum in July, forced by the seasonal evolution of the Yellow Sea Cold Water and monsoon winds. The interannual Chl-a concentration trends vary among regions and seasons. There are significant increasing trends over a large area around Haizhou Bay from winter to summer, which are mainly caused by the rising sea surface temperature and eutrophication. In other coastal areas, the Chl-a concentration shows decreasing trends, which are clearest in summer and induced by the weakening land rainfall. This study highlights the differences in the Chl-a dynamics among regions around the Shandong Peninsula and is helpful for further studies of coupled physical-ecological-human interactions at multiple scales.

This is a preview of subscription content, access via your institution.

References

  1. Cai Y M, Ning X R, Liu Z L, Liu C G. 2002. Size-fractionated chlorophyll a, primary production and new production in Laizhou Bay, Bohai Sea, China. Studia Marina Sinica, (44): 1–10. (in Chinese with English abstract)

    Google Scholar 

  2. Campbell J W. 1995. The lognormal distribution as a model for bio-optical variability in the sea. Journal of Geophysical Research: Oceans, 100(C7): 13237–13254.

    Article  Google Scholar 

  3. Chen M Y, Xie P P, Janowiak J E, Arkin P A. 2002. Global land precipitation: a 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3(3): 249–266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    Article  Google Scholar 

  4. Cui T W, Zhang J, Groom S, Sun L, Smyth T, Sathyendranath S. 2010. Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters. Remote Sensing of Environment, 114(10): 2326–2336, https://doi.org/10.1016/j.rse.2010.05.009.

    Article  Google Scholar 

  5. Dong Z J, Liu D Y, Wang Y J, Di B P. 2019. Temporal and spatial variations of coastal water quality in Sishili Bay, northern Yellow Sea of China. Aquatic Ecosystem Health & Management, 22(1): 30–39.

    Article  Google Scholar 

  6. Donlon C J, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W. 2012. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of Environment, 116: 140–158, https://doi.org/10.1016/j.rse.2010.10.017.

    Article  Google Scholar 

  7. Fang Y, Fang G H, Zhang Q H. 2000. Numerical simulation and dynamic study of the wintertime circulation of the Bohai Sea. Chinese Journal of Oceanology and Limnology, 18(1): 1–9, https://doi.org/10.1007/BF02842535.

    Article  Google Scholar 

  8. Field C B, Behrenfeld M J, Randerson J T, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374): 237–240, https://doi.org/10.1126/science.281.5374.237.

    Article  Google Scholar 

  9. Frouin R, Lingner D W, Gautier C, Baker K S, Smith R C. 1989. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface. Journal of Geophysical Research: Ocean, 94(C7): 9731–9742, https://doi.org/10.1029/JC094iC07p09731.

    Article  Google Scholar 

  10. Fu M Z, Wang Z L, Li Y, Li R X, Sun P, Wei X H, Lin X Z, Guo J S. 2009. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): seasonal variability. Continental Shelf Research, 29(18): 2178–2194, https://doi.org/10.1016/j.csr.2009.08.010.

    Article  Google Scholar 

  11. Fu M Z, Wang Z L, Pu X M, Xu Z J, Zhu M Y. 2012. Changes of nutrient concentrations and N:P:Si ratios and their possible impacts on the Huanghai Sea ecosystem. Acta Oceanologica Sinica, 31(4): 101–112, https://doi.org/10.1007/s13131-012-0224-x.

    Article  Google Scholar 

  12. Gao H W, Wu D X, Bai J, Shi J H, Li Z Y, Jiang W S. 2003. Distributions of environmental parameters in Laizhou Bay in summer, 2000. Journal of Ocean University of Qingdao, 33(2): 185–191. (in Chinese with English abstract)

    Google Scholar 

  13. Gao Y P, Yao P, Mi T Z, Chen H T, Zhang X Q, Yu Z G. 2011. Chlorophyll a and other environmental parameters in the Xiaoqing River Estuary, Laizhou Bay: spatial distributions and statistical analysis. Marine Sciences, 35(7): 71–81. (in Chinese with English abstract)

    Google Scholar 

  14. Gong G C, Chang J, Chiang K P, Hsiung T M, Hung C C, Duan S W, Codispoti L A. 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the three gorges dam? Geophysical Research Letters, 33(7): L07610, https://doi.org/10.1029/2006GL025800.

    Article  Google Scholar 

  15. Gong G C, Wen Y H, Wang B W, Liu G J. 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7): 1219–1236.

    Article  Google Scholar 

  16. Gregg W W, Conkright M E. 2002. Decadal changes in global ocean chlorophyll. Geophysical Research Letters, 29(15): 1730, https://doi.org/10.1029/2002GL014689.

    Article  Google Scholar 

  17. Guo F, Liu S, Wang F F, Hou G H. 2016. Distribution of nutrients in the summer of Laizhou Bay and influence factors. Marine Geology Frontiers, 32(2): 38–44. (in Chinese with English abstract)

    Google Scholar 

  18. Hao Y J, Tang D L, Yu L, Xing Q G. 2011. Nutrient and chlorophyll a anomaly in red-tide periods of 2003–2008 in Sishili Bay, China. Chinese Journal of Oceanology and Limnology, 29(3): 664–673, https://doi.org/10.1007/s00343-011-0179-3.

    Article  Google Scholar 

  19. He X Q, Bai Y, Pan D L, Tang J W, Wang D F. 2012. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters. Optics Express, 20(18): 20754–20770, https://doi.org/10.1364/OE.20.020754.

    Article  Google Scholar 

  20. He X Q, Bai Y, Pan D, Chen C T A, Cheng Q, Wang D, Gong F. 2013. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998–2011). Biogeosciences, 10(7): 4721–4739, https://doi.org/10.5194/bg-10-4721-2013.

    Article  Google Scholar 

  21. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan R J, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J N. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049, https://doi.org/10.1002/qj.3803.

    Article  Google Scholar 

  22. Hu C M, Lee Z P, Franz B. 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. Journal of Geophysical Research: Ocean, 117(C1): C01011.

    Google Scholar 

  23. Huang H, Li D P, Zhang Y, Zhang S. 2017. Effects of artificial reefs deployment on nutrients in the marine farming zone of Haizhou Bay. Acta Scientiae Circumstantiae, 37(8): 2854–2861. (in Chinese with English abstract)

    Google Scholar 

  24. Huang R H, Chen J L, Wang L, Lin Z D. 2012. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian Monsoon System. Advances in Atmospheric Sciences, 29(5): 910–942, https://doi.org/10.1007/s00376-012-2015-x.

    Article  Google Scholar 

  25. Jiang H C, Wang Y J, Li J H, Tao H M, Bai Y Y, Su B, Liu D Y 2018. Annual variation and spatial distribution of nutrients in the Laizhou Bay. Marine Science Bulletin, 37(4): 411–423. (in Chinese with English abstract)

    Google Scholar 

  26. Li B, Gu W L, Jin Y, Ma Y Q, Bai Y Y, Sun S, Wang W J, Liu X J. 2012. Distribution of chlorophyll-a and primary productivity in Yantai Sishili Bay. Progress in Fishery Sciences, 33(2): 19–23. (in Chinese with English abstract)

    Google Scholar 

  27. Li H M, Zhang C S, Han X R, Shi X Y. 2015. Changes in concentrations of oxygen, dissolved nitrogen, phosphate, and silicate in the southern Yellow Sea, 1980–2012: sources and seaward gradients. Estuarine, Coastal and Shelf Science, 163: 44–55, https://doi.org/10.1016/j.ecss.2014.12.013.

    Article  Google Scholar 

  28. Li Z Q, Li X, Sun L Y, Liu Z Z, Gu Y Z, Zhai F G, Li P L. 2019. Analysis of the temporal variations of dissolved oxygen concentration in seawater in the bottom of the Liugong Island marine pasture. Oceanologia et Limnologia Sinica, 50(1): 86–99. (in Chinese with English abstract)

    Article  Google Scholar 

  29. Lin C, Ning X R, Su J, Lin Y, Xu B. 2005. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. Journal of Marine Systems, 55(3–4): 223–234, https://doi.org/10.1016/j.jmarsys.2004.08.001.

    Article  Google Scholar 

  30. Liu C D, Guo X F, Tang Y L, Sheng H X, Huang L Y. 2015. Phytoplankton community composition and its relationship with environmental factors in the artificial reef area around the Qiansan Islets, Haizhou Bay. Journal of Fishery Sciences of China, 22(3): 545–555. (in Chinese with English abstract)

    Google Scholar 

  31. Liu D Y, Wang Y Q. 2013. Trends of satellite derived chlorophyll-a (1997–2011) in the Bohai and Yellow Seas, China: effects of bathymetry on seasonal and inter-annual patterns. Progress in Oceanography, 116: 154–166, https://doi.org/10.1016/j.pocean.2013.07.003.

    Article  Google Scholar 

  32. Liu S M, Li L W, Zhang Z N. 2011. Inventory of nutrients in the Bohai. Continental Shelf Research, 31(16): 1790–1797, https://doi.org/10.1016/j.csr.2011.08.004.

    Article  Google Scholar 

  33. Liu S, Zhang J M, Leng Y, Cui W L. 2013. Nutrient distribution characteristics and its annual variations in the vicinity waters of the Yellow River estuary. Marine Science Bulletin, 32(4): 383–388. (in Chinese with English abstract)

    Google Scholar 

  34. Liu Y C, Liu Z Z, Gu Y Z, Li P L, Sun L Y, Zhai F G, Song H F, Li Z N, Wang Z Y, Jia N D, Qu L R, Gai Y Y. 2019. Feature research for temporal variability of the bottom water dissolved oxygen concentration in the marine ranch of Swan Lake, Weihai. Marine Sciences, 43(9): 41–53. (in Chinese with English abstract)

    Article  Google Scholar 

  35. Lv R H, Xia B, Li B H, Fei Z L. 1999. The fluctuations of primary productivity in Bohai Sea waters over ten years. Journal of Oceanography of Huanghai & Bohai Seas, 17(3): 80–86. (in Chinese with English abstract)

    Google Scholar 

  36. Ma W D, Wang Q, Wu C Q, Yin S J, Xing Q G, Shi P. 2014. The chlorophyll-a distribution of Yantai coastal waters based on MODIS data. Environmental Monitoring in China, 30(5): 149–154. (in Chinese with English abstract)

    Google Scholar 

  37. Mann M E. 2004. On smoothing potentially non-stationary climate time series. Geophysical Research Letters, 31(7): L07214.

    Article  Google Scholar 

  38. Naimie C E, Blain C A, Lynch D R. 2001. Seasonal mean circulation in the Yellow Sea—a model-generated climatology. Continental Shelf Research, 21(6–7): 667–695, https://doi.org/10.1016/S0278-4343(00)00102-3.

    Article  Google Scholar 

  39. Ni X B, Huang D J, Zeng D Y, Zhang T, Li H L, Chen J F. 2016. The impact of wind mixing on the variation of bottom dissolved oxygen off the Changjiang Estuary during summer. Journal of Marine Systems, 154: 122–130, https://doi.org/10.1016/j.jmarsys.2014.11.010.

    Article  Google Scholar 

  40. O’Reilly J E, Maritorena S, Mitchell B G, Siegel D A, Carder K L, Garver S A, Kahru M, McClain C. 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Ocean, 103(C11): 24937–24953.

    Article  Google Scholar 

  41. Qiao Y H, Feng J F, Cui S F, Zhu L. 2017. Long-term changes in nutrients, chlorophyll a and their relationships in a semi-enclosed eutrophic ecosystem, Bohai Bay, China. Marine Pollution Bulletin, 117(1–2): 222–228, https://doi.org/10.1016/j.marpolbul.2017.02.002.

    Article  Google Scholar 

  42. Qu B X, Song J M, Yuan H M, Li X G, Li N, Duan L Q, Chen X, Lu X. 2015. Summer carbonate chemistry dynamics in the Southern Yellow Sea and the East China Sea: regional variations and controls. Continental Shelf Research, 111: 250–261.

    Article  Google Scholar 

  43. Qu H J, Kroeze C. 2010. Past and future trends in nutrients export by rivers to the coastal waters of China. Science of the Total Environment, 408(9): 2075–2086, https://doi.org/10.1016/j.scitotenv.2009.12.015.

    Article  Google Scholar 

  44. Ren C Y, Wang Z M, Zhang Y Z, Zhang B, Chen L, Xi Y B, Xiao X M, Doughty R B, Liu M Y, Jia M M, Mao D H, Song K S. 2019. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. International Journal of Applied Earth Observation and Geoinformation, 82: 101902, https://doi.org/10.1016/j.jag.2019.101902.

    Article  Google Scholar 

  45. Ren L L, Wang M R, Li C H, Zhang W. 2002. Impacts of human activity on river runoff in the northern area of China. Journal of Hydrology, 261(1–4): 204–217, https://doi.org/10.1016/S0022-1694(02)00008-2.

    Article  Google Scholar 

  46. Reynolds R W, Smith T M, Liu C Y, Chelton D B, Casey K S, Schlax M G. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473–5496.

    Article  Google Scholar 

  47. Shan Z X, Zheng Z H, Xing H Y, Liu X J, Liu X B, Liu Y H. 2000. Study on eutrophication in Laizhou Bay of Bohai. Transactions of Oceanology and Limnology, (2): 41–46. (in Chinese with English abstract)

    Google Scholar 

  48. Shen C Y, Shi P, Zhao H. 2014. Spatial-temporal distribution characteristics of chlorophyll a and the controlling factors in the Sishili Bay of Yantai. Marine Sciences, 38(9): 33–38. (in Chinese with English abstract)

    Google Scholar 

  49. Shi W, Wang M H. 2010. Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations. Journal of Geophysical Research: Ocean, 115(C11): C11022.

    Article  Google Scholar 

  50. Shi W, Wang M H. 2012a. Satellite views of the Bohai Sea, Yellow Sea, and East China Sea. Progress in Oceanography, 104: 30–45, https://doi.org/10.1016/j.pocean.2012.05.001.

    Article  Google Scholar 

  51. Shi W, Wang M H. 2012b. Sea ice properties in the Bohai Sea measured by MODIS-Aqua: 2. Study of sea ice seasonal and interannual variability. Journal of Marine Systems, 95: 41–49.

    Article  Google Scholar 

  52. Su J L. 1998. Circulation dynamics of the China Seas north of 18°N. In: Robinson A R, Brink K H eds. The Sea. John Wiley & Sons Inc., New York. p.483–505.

    Google Scholar 

  53. Su J L. 2001. A review of circulation dynamics of the coastal oceans near China. Acta Oceanologica Sinica, 23(4): 1–16. (in Chinese with English abstract)

    Google Scholar 

  54. Su M, Yang Y. 2018. Evolution of district marine policies in China: the case of Shandong Province. Marine Policy, 89: 124–131, https://doi.org/10.1016/j.marpol.2017.12.028.

    Article  Google Scholar 

  55. Sun J, Liu D Y, Chai X Y, Qian S B. 2002. The distribution of phytoplankton biomass and primary productivity in the Laizhou Bay and estuary of the Weihe River in summer. Acta Oceanologica Sinica, 24(5): 81–90. (in Chinese with English abstract)

    Google Scholar 

  56. Sun X R, Shen F, Brewin R J W, Liu D Y, Tang R G. 2019. Twenty-year variations in satellite-derived chlorophyll-a and phytoplankton size in the Bohai Sea and Yellow Sea. Journal of Geophysical Research: Oceans, 124(12): 8887–8912, https://doi.org/10.1029/2019JC015552.

    Google Scholar 

  57. Wang B D, Wang X L, Zhan R. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 58(1): 127–136, https://doi.org/10.1016/S0272-7714(03)00067-2.

    Article  Google Scholar 

  58. Wang H J, Wu X, Bi N S, Li S, Yuan P, Wang A M, Syvitski J P M, Saito Y, Yang Z S, Liu S M, Nittrouer J. 2017. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review. Global and Planetary Change, 157: 93–113.

    Article  Google Scholar 

  59. Wang J, Li H Z. 2002. Study on chlorophyll and primary production in inshore waters of the Bohai Sea. Marine Fisheries Research, 23(1): 23–28. (in Chinese with English abstract)

    Google Scholar 

  60. Wang X Y, Liu Z Z, Gu Y Z, Zhai F G, Sun L Y, Song H F, Li Z N, Wang Z Y, Jia N D. 2020. Study on the temporal variation of bottom water dissolved oxygen concentration in the Xigang marine ranch. Marine Sciences, 44(9): 9–20. (in Chinese with English abstract)

    Google Scholar 

  61. Wang Y J, Liu D Y, Dong Z J, Di B P, Shen X H. 2012. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China. Marine Pollution Bulletin, 64(12): 2708–2719, https://doi.org/10.1016/j.marpolbul.2012.09.024.

    Article  Google Scholar 

  62. Wang Y Q, Gao Z Q. 2020. Contrasting chlorophyll-a seasonal patterns between nearshore and offshore waters in the Bohai and Yellow Seas, China: a new analysis using improved satellite data. Continental Shelf Research, 203: 104173.

    Article  Google Scholar 

  63. Wang Y Q, Liu D Y, Wang Y J, Gao Z Q, Keesing J K. 2019. Evaluation of standard and regional satellite chlorophyll-a algorithms for moderate-resolution imaging spectroradiometer (MODIS) in the Bohai and Yellow Seas, China: a comparison of chlorophyll-a magnitude and seasonality. International Journal of Remote Sensing, 40(13): 4980–4995.

    Article  Google Scholar 

  64. Wei H, Sun J, Moll A, Zhao L. 2004. Phytoplankton dynamics in the Bohai Sea—observations and modelling. Journal of Marine Systems, 44(3–4): 233–251, https://doi.org/10.1016/j.jmarsys.2003.09.012.

    Article  Google Scholar 

  65. Wei Q S, Wang B D, Chen J F, Xia C S, Qu D P, Xie L P. 2015. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary. Science China Earth Sciences, 58(4): 628–648, https://doi.org/10.1007/s11430-014-5007-0.

    Article  Google Scholar 

  66. Wei Q S, Wang B D, Yao Q Z, Xue L, Sun J C, Xin M, Yu Z G. 2019. Spatiotemporal variations in the summer hypoxia in the Bohai Sea (China) and controlling mechanisms. Marine Pollution Bulletin, 138: 125–134, https://doi.org/10.1016/j.marpolbul.2018.11.041.

    Article  Google Scholar 

  67. Xin F Y, Ma S S, Cui Y, Chen B J, Chen J F, Zhou S L. 1997. Distribution of chlorophyll-a content and estimation of the primary productivity in Rushan Bay from June to September. Marine Fisheries Research, 18(2): 32–38.

    Google Scholar 

  68. Xing Q G, Loisel H, Schmitt F G, Dessailly D, Hao Y J, Han Q Y, Shi P. 2012. Fluctuations of satellite-derived chlorophyll concentrations and optical indices at the Southern Yellow Sea. Aquatic Ecosystem Health & Management, 15(2): 168–175, https://doi.org/10.1080/14634988.2012.688480.

    Article  Google Scholar 

  69. Yamaguchi H, Ishizaka J, Siswanto E, Son Y B, Yoo S, Kiyomoto Y. 2013. Seasonal and spring interannual variations in satellite-observed chlorophyll-a in the Yellow and East China Seas: new datasets with reduced interference from high concentration of resuspended sediment. Continental Shelf Research, 59: 1–9, https://doi.org/10.1016/j.csr.2013.03.009.

    Article  Google Scholar 

  70. Yamaguchi H, Kim H C, Son Y B, Okamura K, Kiyomoto Y, Ishizaka J. 2012. Seasonal and summer interannual variations of SeaWiFS chlorophyll a in the Yellow Sea and East China Sea. Progress in Oceanography, 105: 22–29, https://doi.org/10.1016/j.pocean.2012.04.004.

    Article  Google Scholar 

  71. Yanagi T, Takahashi S. 1993. Seasonal variation of circulations in the East China Sea and the Yellow Sea. Journal of Oceanography, 49(5): 503–520, https://doi.org/10.1007/BF02237458.

    Article  Google Scholar 

  72. Yang B, Gao X L. 2019. Chromophoric dissolved organic matter in summer in a coastal mariculture region of northern Shandong Peninsula, North Yellow Sea. Continental Shelf Research, 176: 19–35.

    Article  Google Scholar 

  73. Yoder J A, Kennelly M A. 2003. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Global Biogeochemical Cycles, 17(4): 1112, https://doi.org/10.1029/2002GB001942.

    Article  Google Scholar 

  74. Yu L, Hao Y J, Cai Y Y. 2009. Annual variation of nutrient and Chla during HABs’ periods in Sishili Bay. Marine Environmental Science, 28(5): 558–561. (in Chinese with English abstract)

    Google Scholar 

  75. Yu Z G, Mi T Z, Xie B D, Yao Q Z, Zhang J. 2000. Changes of the environmental parameters and their relationship in recent twenty years in the Bohai Sea. Marine Environmental Science, 19(1): 15–19. (in Chinese with English abstract)

    Google Scholar 

  76. Zeng X M, He R Y, Xue Z, Wang H J, Wang Y, Yao Z G, Guan W B, Warrillow J. 2015. River-derived sediment suspension and transport in the Bohai, Yellow, and East China Seas: a preliminary modeling study. Continental Shelf Research, 111: 112–125, https://doi.org/10.1016/j.csr.2015.08.015.

    Article  Google Scholar 

  77. Zhai F G, Li P L, Gu Y Z, Li X, Chen D, Li L, Sun L Y, Liu Z Z, Jiang Q Y, Wu W F. 2020. Review of the research and application of the submarine cable online observation system. Marine Sciences, 44(8): 14–28. (in Chinese with English abstract)

    Google Scholar 

  78. Zhang C Y, Hu C M, Shang S L, Müller-Karger F E, Li Y, Dai M H, Huang B Q, Ning X R, Hong H S. 2006. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China. Remote Sensing of Environment, 102(3–4): 250–263, https://doi.org/10.1016/j.rse.2006.02.015.

    Article  Google Scholar 

  79. Zhang F, Li C L, Sun S, Wu Y L, Ren J P. 2009. Distribution patterns of chlorophyll a in spring and autumn in association with hydrological features in the southern Yellow Sea and northern East China Sea. Chinese Journal of Oceanology and Limnology, 27(4): 784–792, https://doi.org/10.1007/s00343-009-9182-3.

    Article  Google Scholar 

  80. Zhang H L, Qiu Z F, Sun D Y, Wang S Q, He Y J. 2017. Seasonal and interannual variability of satellite-derived chlorophyll-a (2000–2012) in the Bohai Sea, China. Remote Sensing, 9(6): 582, https://doi.org/10.3390/rs9060582.

    Article  Google Scholar 

  81. Zhang J. 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16(8): 1023–1045, https://doi.org/10.1016/0278-4343(95)00055-0.

    Article  Google Scholar 

  82. Zhang M W, Dong Q, Cui T W, Ding J. 2015. Remote sensing of spatiotemporal variation of apparent optical properties in Bohai Sea. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3): 1176–1184, https://doi.org/10.1109/JSTARS.2014.2380785.

    Google Scholar 

  83. Zhang X X, Yao Q Z, Chen H T, Mi T Z, Tan J Q, Yu Z G. 2010. Seasonal variation and fluxes of nutrients in the lower reaches of the Yellow River. Periodical of Ocean University of China, 40(7): 82–88. (in Chinese with English abstract)

    Google Scholar 

  84. Zhang Z X, Qiao F L, Guo J S, Guo B H. 2018. Seasonal changes and driving forces of inflow and outflow through the Bohai Strait. Continental Shelf Research, 154: 1–8, https://doi.org/10.1016/j.csr.2017.12.012.

    Article  Google Scholar 

  85. Zhou F X, Gao X L, Zhuang W, Zhang J F, Li P M. 2015. The impact of rivers on the Chl a concentrations in coastal surface waters of the Laizhou Bay. Marine Environmental Science, 34(2): 184–189.

    Google Scholar 

  86. Zhou F, Huang D J, Xue H J, Xuan J L, Yan T, Ni X B, Zeng D Y, Li J. 2017a. Circulations associated with cold pools in the Bohai Sea on the Chinese continental shelf. Continental Shelf Research, 137: 25–38, https://doi.org/10.1016/j.csr.2017.02.005.

    Article  Google Scholar 

  87. Zhou F, Xuan J L, Huang D J, Liu C G, Sun J. 2013. The timing and the magnitude of spring phytoplankton blooms and their relationship with physical forcing in the central Yellow Sea in 2009. Deep Sea Research Part II: Topical Studies in Oceanography, 97: 4–15, https://doi.org/10.1016/j.dsr2.2013.05.001.

    Article  Google Scholar 

  88. Zhou L M, Sun Y, Zhang H H, Yang G P. 2018. Distribution and characteristics of inorganic nutrients in the surface microlayer and subsurface water of the Bohai and Yellow Seas. Continental Shelf Research, 168: 1–10.

    Article  Google Scholar 

  89. Zhou Y L, Zhang C S, Shi X Y, Su R G. 2017b. Distribution characteristics of chlorophyll a and its influencing environmental factors in Bohai Sea and Yellow Sea. China Environmental Science, 37(11): 4259–4265. (in Chinese with English abstract)

    Google Scholar 

  90. Zhu M Y, Mao X H, Lv R H, Sun M H. 1993. Chlorophyll a and primary productivity in the Yellow Sea. Journal of Oceanography of Huanghai & Bohai Seas, 11(3): 38–51. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fangguo Zhai or Peiliang Li.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41776012, 41606107, 41576082), the National Key Research and Development Program of China (Nos. 2019YFD0901305, 2018YFC1407605), the Science and Technology Development Plan Project of Shandong Province (No. 2016ZDJS09A02), the Key Research and Development Project of Zhejiang Province (No. 2020C03012), the Key Research and Development Project of Guangdong Province (No. 2020B1111030002), the Major Science and Technology Project of Sanya YZBSTC (No. YZ2019ZD0X), and the Shandong Provincial Natural Science Foundation (No. ZR201911060280)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Gu, Y., Zhai, F. et al. Climatology and seasonal variability of satellite-derived chlorophyll a around the Shandong Peninsula. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0249-5

Download citation

Keyword

  • chlorophyll-a concentration
  • Shandong Peninsula
  • climatology
  • seasonal variability
  • Yellow Sea Cold Water