Carbon and nitrogen budget in fish-polychaete integrated aquaculture system

Abstract

Integrated multi-tropic aquaculture (IMTA) systems have been used in China for many years and have achieved significant economic, social, and ecological benefits. However, there is still a lack of benthic bioremediation species that can effectively utilize the aquaculture particulate organic waste in the system. Polychaete Perinereis aibuhitensis Grube is used as an environmental remediation species for large-scale aquaculture to reduce particulate organic waste, which is of great significance to environmental protection. To improve bio-elements utilization efficiency, P. aibuhitensis was applied for IMTA indoor fish (Hexagrammos otakii) farming. Results showed that in the system, production of 1 kg of the fish discharged 2 141–2 338 mg of carbon and 529–532 mg of nitrogen, while in the monoculture of the fish, the figures were 3 033–3 390 mg and 764–794 mg, or 24.84%–35.26% and 30.35%–33.32% less, respectively. This approach promoted IMTA technology that could utilize the particulate organic waste from intensive aquaculture and reduce the adverse environmental effects.

This is a preview of subscription content, access via your institution.

References

  1. Á Norði G, Glud R N, Gaard E, Simonsen K. 2011. Environmental impacts of coastal fish farming: carbon and nitrogen budgets for trout farming in Kaldbaksfjørður (Faroe Islands). Marine Ecology Progress Series, 431: 223–241, https://doi.org/10.3354/meps09113.

    Article  Google Scholar 

  2. Abreu M H, Varela D A, Henríquez L, Villarroel A, Yarish C, Sousa-Pinto I, Buschmann A H. 2009. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture, 293(3–4): 211–220, https://doi.org/10.1016/j.aquaculture.2009.03.043.

    Article  Google Scholar 

  3. Brennan N B. 2018. Studying the Waste Recycling Potential of Naturally Occurring Polychaetes on Benthic Trays under a Norwegian Fish Farm. The University of Bergen, Bergen, Norway.

    Google Scholar 

  4. Chang J, Tian X L, Dong S L, Wang D P, Ma S, Bao J, Sun Y C, Sun J. 2006. An experimental study on nitrogen and phosphorus budgets in polyculture of shrimp, bivalve and seaweed. Periodical of Ocean University of China, 36(S1): 33–39, https://doi.org/10.3969/j.issn.1672-5174.2006.z1.006. (in Chinese with English abstract)

    Google Scholar 

  5. Chen B Y, Gong Q B, Fu G H, Tang X B, Shi Q. 2007. Farming technique of Perinereis albuhitensis Grube for ecological remediation. Modern Fisheries Information, 22(6): 24–27, https://doi.org/10.3969/j.issn.1004-8340.2007.06.008. (in Chinese with English abstract)

    Google Scholar 

  6. Chopin T, Buschmann A H, Hulling C, Troell M, Kautsky N, Neori A, Kraemer G P, Zertuche-Gonzácee J A, Yarish C, Neefus C. 2001. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37(6): 975–986, https://doi.org/10.1046/j.1529-8817.2001.01137.x.

    Article  Google Scholar 

  7. Chopin T, Robinson S M C, Troell M, Neori A, Buschmann A H, Fang J. 2008. Multitrophic integration for sustainable marine aquaculture. In: Encyclopedia of Ecology. Elsevier, Amsterdam. p.2 463–2 475, https://doi.org/10.1016/B978-008045405-4.00065-3.

    Google Scholar 

  8. Chopin T, Troell M, Reid G K, Knowler D, Robinson S M C, Neori A, Buschmann A H, Pang S J. 2010. Integrated multi-trophic aquaculture. Part I. Responsible practice provides diversified products, biomitigation. Global Aquaculture Advocate, 5: 38–39.

    Google Scholar 

  9. Deng J S, Ma S, Niu H X, Tian X L, Su Y P. 2006. Effects of introduction of Perinereis aibuhitensis Grube on the sediment quality of shrimp ponds. Periodical of Ocean University of China, 36(S2): 99–104. (in Chinese with English abstract)

    Google Scholar 

  10. Fang J G, Zhang J, Xiao T, Huang D J, Liu S M. 2016a. Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquaculture Environment Interactions, 8: 201–205, https://doi.org/10.3354/aei00179.

    Article  Google Scholar 

  11. Fang J H, Fang J G, Chen Q L, Mao Y Z, Jiang Z J, Du M R, Gao Y P, Lin F. 2019. Assessing the effects of oyster/kelp weight ratio on water column properties: an experimental IMTA study at Sanggou Bay, China. Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-019-9109-6.

  12. Fang J H, Jiang Z J, Jansen H M, Hu F W, Fang J G, Liu Y, Gao Y P, Du M R. 2017. Applicability of Perinereis aibuhitensis Grube for fish waste removal from fish cages in Sanggou Bay, P. R. China. Journal of Ocean University of China, 16(2): 294–304, https://doi.org/10.1007/s11802-017-3256-1.

    Article  Google Scholar 

  13. Fang J H, Zhang J H, Jiang Z J, Du M R, Liu Y, Mao Y Z, Gao Y P, Fang J G. 2016b. Environmental remediation potential of Perinereis aibuhitensis (Polychaeta) based on the effects of temperature and feed types on its carbon and nitrogen budgets. Marine Biology Research, 12(6): 583–594, https://doi.org/10.1080/17451000.2016.1177653.

    Article  Google Scholar 

  14. Fang J H, Zhang J H, Wu W G, Mao Y Z, Gao Y P, Jiang Z J, Fang J G. 2014. Carbon and nitrogen budget and environmental optimization in an integrated cage culture model of Japanese flounder with Perinereis aibuhitensis. Journal of Fishery Sciences of China, 21(2): 390–397, https://doi.org/10.3724/SPJ.1118.2014.00390. (in Chinese with English abstract)

    Google Scholar 

  15. FAO (2018) The state of world fisheries and aquaculture. http://www.fao.org/documents/card/en/c/ca9231en.

  16. Fish J D, Fish S A. 1989. Students’ Guide to the Seashore. Springer, Dordrecht. 572p, https://doi.org/10.1007/978-94-011-5888-6.

    Google Scholar 

  17. Gao A G, Yang J Y, Chen Q Z, Wang Z P, Zhang J, Dong Y T, Ning X R. 2003. Comparative studies on macrobenthos between cultured and non-cultured areas in Xiangshan Bay. Journal of Fisheries of China, 27(1): 25–31, https://doi.org/10.3321/j.issn:1000-0615.2003.01.005. (in Chinese with English abstract)

    Google Scholar 

  18. Gillibrand P A, Turrell W R, Moore D C, Adams R D. 1996. Bottom water stagnation and oxygen depletion in a Scottish sea loch. Estuarine, Coastal and Shelf Science, 43(2): 217–235, https://doi.org/10.1006/ecss.1996.0066.

    Article  Google Scholar 

  19. Gu X Y, Jiang X M, Zheng Z M, Jin C H. 2002. Biological characteristics of Perinereis aibuhitensis Grube and status of its utilization. Modern Fisheries Information, 17(8): 33–34, https://doi.org/10.3969/jissn.1004-8340.2002.08.009. (in Chinese with English abstract)

    Google Scholar 

  20. Heilskov A C, Holmer M. 2001. Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. ICES Journal of Marine Science, 58(2): 427–434, https://doi.org/10.1006/jmsc.2000.1026.

    Article  Google Scholar 

  21. Huang H H, Lin Q, Lin Y T, Jia X P, Li C H, Wang W Z. 2005. Spatial-temporal variation of large macrobenthic animals in cage culture sea area in Daya Bay. China Environmental Science, 25(4): 412–416, https://doi.org/10.3321/j.issn:1000-6923.2005.04.007. (in Chinese with English abstract)

    Google Scholar 

  22. Jiang Z J, Wang G H, Fang J G, Mao Y Z. 2013. Growth and food sources of Pacific oyster Crassostrea gigas integrated culture with sea bass Lateolabrax japonicas in Ailian Bay, China. Aquaculture International, 21(1): 45–52, https://doi.org/10.1007/s10499-012-9531-7.

    Article  Google Scholar 

  23. Kinoshita K, Tamaki S, Yoshioka M, Srithonguthai S, Kunihiro T, Hama D, Ohwada K, Tsutsumi H. 2008. Bioremediation of organically enriched sediment deposited below fish farms with artificially mass-cultured colonies of a deposit-feeding polychaete Capitella sp. I. Fisheries Science, 74(1): 77–87, https://doi.org/10.1111/j.1444-2906.2007.01498.x

    Article  Google Scholar 

  24. Langan R. 2004. Balancing marine aquaculture inputs and extraction: combined culture of finfish and bivalve molluscs in the open ocean. Bulletin of the Fisheries Research Agency of Japan, 1: 51–58.

    Google Scholar 

  25. Li G R. 2016. Study on the Physiological and Biochemical Response of Apostichopus japonicas to Environmental Hypoxia Stress. Shanghai Ocean University, Shanghai, China. (in Chinese with English abstract)

    Google Scholar 

  26. Lu G M, Xu Y J, Lu H X. 2011. Ecological characteristics of different Pseudosciaena crocea culture models. Chinese Journal of Applied Ecology, 22(5): 1 325–1 331. (in Chinese with English abstract)

    Google Scholar 

  27. Mazzola A, Mirto S, La Rosa T, Fabiano M, Danovaro R. 2000. Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES Journal of Marine Science, 57(5): 1 454–1 461, https://doi.org/10.1006/jmsc.2000.0904.

    Article  Google Scholar 

  28. Mazzola A, Sarà G. 2001. The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, central Tyrrhenian, MED): stable carbon isotopic analysis. Aquaculture, 192(2–4): 361–379, https://doi.org/10.1016/s0044-8486(00)00463-4.

    Article  Google Scholar 

  29. Mente E, Pierce G J, Santos M B, Neofitou C. 2006. Effect of feed and feeding in the culture of salmonids on the marine aquatic environment: a synthesis for European aquaculture. Aquaculture International, 14(5): 499–522, https://doi.org/10.1007/s10499-006-9051-4.

    Article  Google Scholar 

  30. Neori A, Chopin T, Troell M, Buschmann A H, Kraemer G P, Halling C, Shpigel M, Yarish C. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1–4): 361–391, https://doi.org/10.1016/j.aquaculture.2003.11.015.

    Article  Google Scholar 

  31. Nhan D K, Verdegem M C J, Milstein A, Verreth J A V. 2008. Water and nutrient budgets of ponds in integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam. Aquaculture Research, 39(11): 1 216–1 228, https://doi.org/10.1111/j.1365-2109.2008.01986.x.

    Article  Google Scholar 

  32. Porrello S, Tomassetti P, Manzueto L, Finoia M G, Persia E, Mercatali I, Stipa P. 2005. The influence of marine cages on the sediment chemistry in the Western Mediterranean Sea. Aquaculture, 249(1–4): 145–158, https://doi.org/10.1016/j.aquaculture.2005.02.042.

    Article  Google Scholar 

  33. Pouil S, Samsudin R, Slembrouck J, Sihabuddin A, Sundari G, Khazaidan K, Kristanto A H, Pantjara B, Caruso D. 2019. Nutrient budgets in a small-scale freshwater fish pond system in Indonesia. Aquaculture, 504: 267–274, https://doi.org/10.1016/j.aquaculture.2019.01.067.

    Article  Google Scholar 

  34. Read P, Fernandes T. 2003. Management of environmental impacts of marine aquaculture in Europe. Aquaculture, 226(1–4): 139–163, https://doi.org/10.1016/S0044-8486(03)00474-5.

    Article  Google Scholar 

  35. Reid G K, Robinson S M C, Chopin T, Mullen J, Lander T, Sawhney M, MacDonald B, Haya K, Burridge L, Page F, Ridler N, Boyne-Travis S, Sewuster J, Marvin R, Szemerda M, Powell F. 2007. Recent developments and challenges for open-water, integrated multi-trophic aquaculture (IMTA) in the Bay of Fundy, Canada. In: Proceedings of Contributed Papers and Second National Freshwater Symposium. Aquaculture Association of Canada, Edmonton, Alberta, Canada. p.43–47.

    Google Scholar 

  36. Ren G J, Liu Q, Gao T X, Yanagimoto T. 2013. Population demography and genetic structure of the fat greenling (Hexagrammos otakii) inferred from mtDNA control region sequence analyses. Biochemical Systematics and Ecology, 47: 156–163, https://doi.org/10.1016/j.bse.2012.09.026.

    Article  Google Scholar 

  37. Sanz-Lázaro C, Marin A. 2006. Benthic recovery during open sea fish farming abatement in Western Mediterranean, Spain. Marine Environmental Research, 62(5): 374–387, https://doi.org/10.1016/j.marenvres.2006.05.006

    Article  Google Scholar 

  38. Stenton-Dozey J. 2007. Finding hidden treasure in aquaculture waste. Water & Atmosphere, 15(4): 10–11.

    Google Scholar 

  39. Troell M, Joyce A, Chopin T, Neori A, Buschmann A H, Fang J G. 2009. Ecological engineering in aquaculture-potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297(1–4): 1–9, https://doi.org/10.1016/j.aquaculture.2009.09.010.

    Article  Google Scholar 

  40. Wen Y M, Wei X G, Shu T F, Zhou J F, Yu G H, Li F, Huang Y Y. 2007. Forms and balance of nitrogen and phosphorus in cage culture waters in Guangdong Province, China. Chinese Geographical Science, 17(4): 370–375, https://doi.org/10.1007/s11769-007-0370-9.

    Article  Google Scholar 

  41. Wu R S S. 1995. The environmental impact of marine fish culture: towards a sustainable future. Marine Pollution Bulletin, 31(4–12): 159–166, https://doi.org/10.1016/0025-326x(95)00100-2.

    Article  Google Scholar 

  42. Yang D Z, Cao C C, Wang G, Zhou Y B, Xiu Z L. 2015. The growth study of Perinereis aibuhitensis in airlift recirculating aquaculture system. The Open Biotechnology Journal, 9(1): 143–149, https://doi.org/10.2174/1874070701509010143.

    Article  Google Scholar 

  43. Yang J Y, Gao A G, Ning X R, Zhang D S. 2007. Characteristics of macrofauna and their response to aquiculture in Yueqing Bay, China. Acta Ecologica Sinica, 27(1): 34–40, https://doi.org/10.1016/S1872-2032(07)60008-0.

    Article  Google Scholar 

  44. Zhang Y. 2012. Comparison of Culture Effect, Discharge of Nitrogen and Phosphorus and Environmental Influence for Three Kinds of Cages. Huazhong Agriculture University, Wuhan, China, https://doi.org/10.7666/d.Y2161892. (in Chinese with English abstract)

    Google Scholar 

  45. Zhao Q L, Zhao Q, Xu J Z. 1993. A study of annual fluctuation of biomass of Perinereis aibuhitensis in Qidong, Jiangsu Province. Journal of Nanjing Normal University (Natural Science Edition), 16(1): 55–60. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinghui Fang.

Additional information

Supported by the National Natural Science Foundation of China (No. 41876185), the Major Agricultural Applied Technological Innovation program in Shandong Province (No. SD2019YY007), and the Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences (No. 2018GH15)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Sun, M., Fang, J. et al. Carbon and nitrogen budget in fish-polychaete integrated aquaculture system. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0218-z

Download citation

Keyword

  • Perinereis aibuhitensis Grube
  • Hexagrammos otakii
  • integrated multi-tropic aquaculture (IMTA)
  • carbon and nitrogen budget
  • sediment remediation