Metabolomics analysis for skin ulceration syndrome of Apostichopus japonicus based on UPLC/Q-TOF MS

Abstract

Skin ulceration syndrome (SUS) is the main diseases affected the development of sea cucumber (Apostichopus japonicus) culture industries. To better observe the changes in the sea cucumber A. japonicus with skin ulceration syndrome (SUS) and understand the pathogenesis of the disease, activities of superoxide dismutase (SOD), catalase (CAT), and level of malondialdehyde (MDA) in coelomic fluid were detected using the Assay Kit and metabolites in the body wall were assessed using ultra-performance liquid chromatography (UPLC) and quadrupole-time of flight (Q-TOF) mass spectrometry (MS). The results indicated that level of MDA was increased during SUS compared with healthy individuals (P<0.01), but activities of SOD and CAT were reduced (P<0.05). In metabolomics analysis, metabolites, such as adenosine, choline, betaine aldehyde, palmitic acid, and taurine, were found to be upregulated and 2-oxoadipic acid, anthranilic acid (vitamin L1), thioetheramide-PC, cholesterol-3-sulfate, and pentadecanoic acid were downregulated (VIP>1 and P<0.1). Pathway enrichment analysis indicated most enrichment of KEGG pathways were mainly related to energy metabolism, immunity, and osmoregulation such as ABC transporters, glycine, serine and threonine metabolism, tryptophan metabolism and neuroactive ligand-receptor interaction. Our study reflected the difference in enzyme activity and metabolites between A. japonicus with SUS and those without, which will provide reference data for investigating SUS.

This is a preview of subscription content, access via your institution.

References

  1. Baldissera M D, Souza C F, Doleski P H, Monteiro S G, da Silva A S, Baldisserotto B. 2018. Serum adenosine deaminase and xanthine oxidase activities in silver catfish naturally infected with Ichthyophthirius multifiliis: the influence of these enzymes on inflammatory and oxidative status. Journal of Fish Diseases, 41(2): 263–268, https://doi.org/10.1111/jfd.12709.

    Article  Google Scholar 

  2. Borths E L, Locher K P, Lee A T, Rees D C. 2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proceedings of the National Academy of Sciences of the United States of America, 99(26): 16 642–16 647, https://doi.org/10.1073/pnas.262659699.

    Article  Google Scholar 

  3. Chang Z Q, Li J, Liu P, Kuo M M C, He Y Y, Chen P, Li J T. 2012. cDNA cloning and expression profile analysis of an ATP-binding cassette transporter in the hepatopancreas and intestine of shrimp Fenneropenaeus chinensis. Aquaculture, 356-357: 250–255, https://doi.org/10.1016/).aquaculture.2012.05.009.

    Article  Google Scholar 

  4. Cossu C, Doyotte A, Babut M, Exinger A, Vasseur P. 2000. Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicology and Environmental Safety, 45(2): 106–121, https://doi.org/10.1006/eesa.1999.1842.

    Article  Google Scholar 

  5. Deng H, He C B, Zhou Z C, Liu C, Tan K F, Wang N B, Jiang B, Gao X G, Liu W D. 2008. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture, 287(1–2): 18–27, https://doi.org/10.1016/j.aquaculture.2008.10.015.

    Google Scholar 

  6. Ejendal K F, Hrycyna C A. 2002. Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Current Protein and Peptide Science, 3(5): 503–511, https://doi.org/10.2174/1389203023380521.

    Article  Google Scholar 

  7. Gu C X, Cheng Y L, Zhen X, Chen X X, Zhou K W. 2019. Determination of progestin residues in fish by UPLC-Q-TOF/MS coupled with QuEChERS. Journal of Analytical Methods in Chemistry, 2019: 6426958, https://doi.org/10.1155/2019/6426958.

    Article  Google Scholar 

  8. Hao R J, Wang Z M, Yang C Y, Deng Y W, Zheng Z, Wang Q H, Du X D. 2018. Metabolomic responses of juvenile pearl oyster Pinctada maxima to different growth performances. Aquaculture, 491: 258–265, https://doi.org/10.1016/j.aquaculture.2018.03.050.

    Article  Google Scholar 

  9. Hu C H, Xia M S, Xiong L, Xu X R. 2005. Effects of Cu bearing montmorillonite on Aeromonas hydrophila adhesion to epithelial cells of Nile tilapia. Journal of Fisheries of China, 29(5): 619–623, https://doi.org/10.3321/j.issn:1000-0615.2005.05.006. (in Chinese with English abstract)

    Google Scholar 

  10. Huo D, Sun L, Ru X S, Zhang L B, Lin C G, Liu S L, Xin X K, Yang H S. 2018. Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: respiration, digestion, immunity and oxidative damage. PeerJ, 6: e4651, https://doi.org/10.7717/peerj.4651.

    Article  Google Scholar 

  11. Huo D, Sun L, Zhang L B, Ru X S, Liu S L, Yang H S. 2019. Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: heat and hypoxia. Marine Pollution Bulletin, 138: 407–420, https://doi.org/10.1016/j.marpolbul.2018.11.063.

    Article  Google Scholar 

  12. Jiang J W, Zhou Z C, Dong Y, Jiang B, Chen Z, Gao S, Guan X Y, Han L. 2017. Seasonal variations of immune parameters in the coelomic fluid of sea cucumber Apostichopus japonicus cultured in pond. Aquaculture Research, 48(4): 1 677–1 687, https://doi.org/10.1111/are.13005.

    Article  Google Scholar 

  13. Jiang X L, Du Y S, Wang P, Liu R Z, Yang X S, Lv Q. 2009. Effects of alginate-derived oligosaccharide on the activities of immunoenzymes in the coelomic fluid and body wall of sea cucumber (Apostichopus japonicus). Periodical of Ocean University of China, 39(6): 1 188–1 192, https://doi.org/10.3969/j.issn.1672-5174.2009.06.006. (in Chinese with English abstract)

    Google Scholar 

  14. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2015. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1): D457–D462, https://doi.org/10.1093/nar/gkv1070.

    Article  Google Scholar 

  15. Kathawala R J, Gupta P, Ashby C R Jr, Chen Z S. 2015. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resistance Updates, 18: 1–17, https://doi.org/10.1016/j.drup.2014.11.002.

    Article  Google Scholar 

  16. Lasley R D, Rhee J W, Van Wylen D G L, Mentzer R M Jr. 1990. Adenosine A1 receptor mediated protection of the globally ischemic isolated rat heart. Journal of Molecular and Cellular Cardiology, 22(1): 39–47, https://doi.org/10.1016/0022-2828(90)90970-D.

    Article  Google Scholar 

  17. Lauss M, Kriegner A, Vierlinger K, Noehammer C. 2007. Characterization of the drugged human genome. Pharmacogenomics, 8: 1 063–1 073, https://doi.org/10.2217/14622416.8.8.1063.

    Article  Google Scholar 

  18. Li C H, Feng W D, Qiu L H, Xia C G, Su X R, Jin C H, Zhou T T, Zeng Y, Li T W. 2012. Characterization of skin ulceration syndrome associated microRNAs in sea cucumber Apostichopus japonicus by deep sequencing. Fish and Shellfish Immunology, 33(2): 436–441, https://doi.org/10.1016/j.fsi.2012.04.013.

    Article  Google Scholar 

  19. Li H W, Zhu Q, Wu L Y, Yin Y L, Kong X F. 2016. Physiological function and dietary application of tryptophan in livestock and poultry. Chinese Journal of Animal Nutrition, 28(3): 659–664 https://doi.org/10.3969/j.issn.1006-267x.2016.03.004. (in Chinese with English abstract)

    Google Scholar 

  20. Liu H, Zheng F, Sun X, Hong X, Dong S, Wang B, Tang X, Wang Y. 2010. Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). Journal of Invertebrate Pathology, 105(3): 236–242, https://doi.org/10.1016/j.jip.2010.05.016.

    Article  Google Scholar 

  21. Liu X L, Ji C L, Zhao J M, Wu H F. 2013. Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges. Fish and Shellfish Immunology, 35(6): 2 001–2 007, https://doi.org/10.1016/j.fsi.2013.09.014.

    Article  Google Scholar 

  22. Lv Z M, Guo M, Li C H, Shao Y N, Zhao X L, Zhang W W. 2019. Divergent proteomics response of Apostichopus japonicus suffering from skin ulceration syndrome and pathogen infection. Comparative Biochemistry and Physiology — Part D: Genomics and Proteomics, 30: 196–205, https://doi.org/10.1016/jxbd.2019.03.003.

    Google Scholar 

  23. Ma X Z, Pang Z D, Wang J H, Song Z, Zhao L M, Du X J, Deng X L. 2018. The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid. Experimental Cell Research, 369(2): 208–217, https://doi.org/10.1016/j.yexcr.2018.05.020.

    Article  Google Scholar 

  24. Mallat Z, Lambeau G, Tedgui A. 2010. Lipoprotein-associated and secreted phospholipases A2 in cardiovascular disease. Circulation, 122(21): 2 183–2 200, https://doi.org/10.1161/CIRCULATIONAHA.110.936393.

    Article  Google Scholar 

  25. Perrino L A, Pierce S K. 2000. Betaine aldehyde dehydrogenase kinetics partially account for oyster population differences in glycine betaine synthesis. The Journal of Experimental Zoology, 286(3): 238–249, https://doi.org/10.1002/(SICI)1097-010X(20000215)286:3<238::AID-JEZ3>3.0.CO;2-E.

    Article  Google Scholar 

  26. Pfeuffer M, Jaudszus A. 2016. Pentadecanoic and heptadecanoic acids: multifaceted odd-chain fatty acids. Advances in Nutrition, 7(4): 730–734, https://doi.org/10.3945/an.115.011387.

    Article  Google Scholar 

  27. Pillon N J, Azizi P M, Li Y E, Liu J, Wang C, Chan K L, Hopperton K E, Bazinet R P, Heit B, Bilan P J, Lee W L, Klip A. 2015. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. American Journal of Physiology-Endocrinology and Metabolism, 309(1): E35–E44, https://doi.org/10.1152/ajpendo.00611.2014. a]Richard L F, Dahms T E, Webster R O. 1998. Adenosine prevents permeability increase in oxidant-injured endothelial monolayers. American Journal of Physiology—Heart and Circulatory Physiology, 274(1): H35–H42, https://doi.org/10.1152/ajpheart.1998.274.1.H35.

    Article  Google Scholar 

  28. Roccatagliata A J, Maier M S, Seldes A M, Pujol C A, Damonte E B. 1996. Antiviral sulfated steroids from the ophiuroid Ophioplocus januarii. Journal of Natural Products, 59(9): 887–889, https://doi.org/10.1021/np960171a.

    Article  Google Scholar 

  29. Roch P. 1999. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture, 172(1–2): 125–145, https://doi.org/10.1016/S0044-8486(98)00439-6.

    Article  Google Scholar 

  30. Sabatine M S, Liu E, Morrow D A, Heller E, McCarroll R, Wiegand R, Berriz G F, Roth F P, Gerszten R E. 2005. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 112(25): 3 868–3 875, https://doi.org/10.1161/CIRCULATIONAHA.105.569137.

    Article  Google Scholar 

  31. Shao Y, Li C H, Ou C R, Zhang P, Lu Y L, Su X R, Li Y, Li T W. 2013. Divergent metabolic responses of Apostichopus japonicus suffered from skin ulceration syndrome and pathogen challenge. Journal of Agricultural and Food Chemistry, 61(45): 10 766–10 771, https://doi.org/10.1021/jf4038776.

    Article  Google Scholar 

  32. Shibata K, Yasui M, Sano M, Fukuwatari T. 2011. Fluorometric determination of 2-oxoadipic acid, a common metabolite of tryptophan and lysine, by high-performance liquid chromatography with pre-chemical derivatization. Bioscience, Biotechnology, and Biochemistry, 75(1): 185–187, https://doi.org/10.1271/bbb.100723.

    Article  Google Scholar 

  33. Viant M R, Rosenblum E S, Tjeerdema R S. 2003. NMR-based metabolomics: a powerful approach for characterizing the effects of environmental stressors on organism health. Environmental Science & Technology, 37(21): 4 982–4 989, https://doi.org/10.1021/es034281x.

    Article  Google Scholar 

  34. Wang F Y, Yang H S, Gao F, Liu G B. 2008a. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(4): 491–498, https://doi.org/10.1016/j.cbpa.2008.06.024.

    Article  Google Scholar 

  35. Wang X J, Sun W J, Sun H, Lv H T, Wu Z M, Wang P, Liu L, Cao H X. 2008b. Analysis of the constituents in the rat plasma after oral administration of Yin Chen Hao Tang by UPLC/Q-TOF-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 46(3): 477–490, https://doi.org/10.1016/j.jpba.2007.11.014.

    Article  Google Scholar 

  36. Wang Y F, Yang J, Hu Y X, Zhang H B, Ding J, Wang L, Qiu X M. 2020. Effects of Salinities on Immune-related Indicators of Sea Cucumber (Apostichopus japonicus). Journal of Guangdong Ocean University, 40(3): 22–29, https://doi.org/10.3969/j.issn.1673-9159.2020.03.004. (in Chinese with English abstract)

    Google Scholar 

  37. Wang Y H, Xiu Y J, Bi K R, Ou J T, Gu W, Wang W, Meng Q G. 2017. Integrated analysis of MRNA-seq in the haemocytes of Eriocheir sinensis in response to Spiroplasma eriocheiris infection. Fish & Shellfish Immunology, 68: 289–298, https://doi.org/10.1016/j.fsi.2017.07.036.

    Article  Google Scholar 

  38. Wiklund P, Bergman J. 2006. The chemistry of anthranilic acid. Current Organic Synthesis, 3(3): 379–402, https://doi.org/10.2174/157017906777934926.

    Article  Google Scholar 

  39. Wikoff W R, Anfora A T, Liu J, Schultz P G, Lesley S A, Peters E C, Siuzdak G. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106(10): 3 698–3 703, https://doi.org/10.1073/pnas.0812874106.

    Article  Google Scholar 

  40. Win S, Than T A, Le B H A, Garcia-Ruiz C, Fernandez-Checa J C, Kaplowitz N. 2015. Sab (Sh3bp5) dependence of jnk mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. Journal of Hepatology, 62(6): 1 367–1 374, https://doi.org/10.1016/j.jhep.2015.01.032.

    Article  Google Scholar 

  41. Xie Y L, Liu L H, Huang X C, Guo Y W, Lou L G. 2005. Scalaradial inhibition of epidermal growth factor receptor-mediated Akt phosphorylation is independent of secretory phospholipase A2. The Journal of Pharmacology and Experimental Therapeutics, 314(3): 1 210–1 217, https://doi.org/10.1124/jpet.105.086520.

    Article  Google Scholar 

  42. Xu D X, Zhou S, Yang H S. 2017. Carbohydrate and amino acids metabolic response to heat stress in the intestine of the sea cucumber Apostichopus japonicus. Aquaculture Research, 48(12): 5 883–5 891, https://doi.org/10.1111/are.13411.

    Article  Google Scholar 

  43. Yan N, Du Y M, Liu X M, Chu M J, Shi J, Zhang H B, Liu Y H, Zhang Z F. 2019. A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chemistry, 275: 618–627, https://doi.org/10.1016/j.foodchem.2018.09.153.

    Article  Google Scholar 

  44. Yang A F, Zhou Z C, Pan Y J, Jiang J W, Dong Y, Guan X Y, Sun H J, Gao S, Chen Z. 2016. RNA sequencing analysis to capture the transcriptome landscape during skin ulceration syndrome progression in sea cucumber Apostichopus japonicus. BMC Genomics, 17: 459, https://doi.org/10.1186/s12864-016-2810-3.

    Article  Google Scholar 

  45. Yin P Y, Zhao X J, Li Q R, Wang J S, Li J S, Xu G W. 2006. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). Journal of Proteome Research, 5(9): 2 135–2 143, https://doi.org/10.1021/pr060256p.

    Article  Google Scholar 

  46. Yu Z H, Zhou Y, Yang H S, Hu C Q. 2014. Bottom culture of the sea cucumber Apostichopus japonicus Selenka (Echinodermata: Holothuroidea) in a fish farm, southern China. Aquaculture Research, 45(9): 1 434–1 441, https://doi.org/10.1111/are.12089.

    Article  Google Scholar 

  47. Zhang C Y, Wang Y G, Rong X J. 2006. Isolation and identification of causative pathogen for skin ulcerative syndrome in Apostichopus japonicus. Journal of Fisheries of China, 30(1): 118–123, https://doi.org/10.3321/j.issn:1000-0615.2006.01.019. (in Chinese with English abstract)

    Google Scholar 

  48. Zhang P J, Li C H, Zhu L, Su X R, Li Y, Jin C H, Li T W. 2013. De novo assembly of the sea cucumber Apostichopus japonicus hemocytes transcriptome to identify miRNA targets associated with skin ulceration syndrome. PLoS One, 8(9): e73506, https://doi.org/10.1371/journal.pone.0073506.

    Article  Google Scholar 

  49. Zhang X L, Cui L F, Li S M. 2019. China Fishery Statistical Yearbook (2019). China Agriculture Press, Beijing, China. p.23. (in Chinese)

    Google Scholar 

  50. Zhao G H, Hou X L, Li X Y, Qu M, Tong C Q, Li W. 2017. Metabolomics analysis of alloxan-induced diabetes in mice using UPLC-Q-TOF-MS after Crassostrea gigas polysaccharide treatment. International Journal of Biological Macromolecules, 108: 550–557, https://doi.org/10.1016/j.ijbiomac.2017.12.057.

    Article  Google Scholar 

  51. Zhou J, He W Y, Wang W N, Yang C W, Wang L, Xin Y, Wu J, Cai D X, Liu Y, Wang A L. 2009. Molecular cloning and characterization of an ATP-binding cassette (ABC) transmembrane transporter from the white shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150(4): 450–458, https://doi.org/10.1016/j.cbpc.2009.06.012.

    Google Scholar 

  52. Zhou L, Li H F, Qin J G, Wang X D, Chen L Q, Xu C, Li E C. 2020. Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at low salinity. Aquaculture, 518: 734847, https://doi.org/10.1016/j.aquaculture.2019.734847.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Ding.

Additional information

Data Availability Statement

All data generated or analyzed during this study are included in this article.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Supported by the National Natural Science Foundation of China (No. 31772849), the Scientific Research Funding Project of Liaoning Provincial Department of Education in 2019 (No. DL201901), and the Program for Liaoning Innovative Research Team in University (No. LT2019003)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Liu, X. et al. Metabolomics analysis for skin ulceration syndrome of Apostichopus japonicus based on UPLC/Q-TOF MS. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0205-4

Download citation

Keyword

  • Apostichopus japonicus
  • skin ulceration syndrome (SUS)
  • metabolome
  • differential metabolites