Isolation and identification of antimicrobial metabolites from sea anemone-derived fungus Emericella sp. SMA01

Abstract

Marine symbiotic fungi represent an intriguing source of discovery of novel secondary metabolites with various biological activities. Sea anemones are benthic marine invertebrates, however, the cultivable symbiotic fungi residing in the sea anemones are paid few attentions compared to those derived from their cnidarian counterparts. Here we show the identification of antimicrobial secondary metabolites from the sea anemone-derived symbiotic fungi. Out of five isolated fungal strains, only the strain SMA01 showed strong antimicrobial activities, which was assigned into the genus Emericella based on the morphological characteristics and the ITS sequencing. Media swift from liquid fermentation to solid rice medium presented little influence on its antibacterial activity. A chemical investigation of the ethyl acetate extract of the Emericella sp. SMA01 led to discovery of the primary antibiotic metabolite phenazine-1-carboxylic acid. The IC50 values of the phenazine-1-carboxylic acid against Phytophthora capsici, Gibberella zeae, and Verticillium dahliae were determined to be 23.26–53.89 µg/mL. To the best of our knowledge, this was the first report of Emericella sp. in sea anemones. The current study may benefit understanding of the defensive chemical interactions between the symbiotic fungi and their host sea anemones.

This is a preview of subscription content, access via your institution.

References

  1. Amend A S, Barshis D J, Oliver T A. 2012. Coral-associated marine fungi form novel lineages and heterogeneous assemblages. The ISME Journal, 6(7): 1 291–1 301, https://doi.org/10.1038/ismej.2011.193.

    Article  Google Scholar 

  2. Bolaños J, De León L F, Ochoa E, Darias J, Raja H A, Shearer C A, Miller A N, Vanderheyden P, Porras-Alfaro A, Caballero-George C. 2015. Phylogenetic diversity of sponge-associated fungi from the Caribbean and the Pacific of Panama and their in vitro effect on angiotensin and endothelin receptors. Marine Biotechnology, 17(5): 533–564, https://doi.org/10.1007/s10126-015-9634-z.

    Article  Google Scholar 

  3. Bugni T S, Ireland C M. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Natural Product Reports, 21(1): 143–163, https://doi.org/10.1039/b301926h.

    Article  Google Scholar 

  4. Calabon M S, Sadaba R B, Campos W L. 2019. Fungal diversity of mangrove-associated sponges from New Washington, Aklan, Philippines. Mycology, 10(1): 6–21, https://doi.org/10.1080/21501203.2018.1518934.

    Article  Google Scholar 

  5. Carroll A R, Copp B R, Davis R A, Keyzers R A, Prinsep M R. 2020. Marine natural products. Natural Product Reports, 37(2): 175–223, https://doi.org/10.1039/C9NP00069K.

    Article  Google Scholar 

  6. Chen H Y, Liu T K, Yang J, Yang X L. 2019. Emerones A-C: three novel merosesquiterpenoids with unprecedented skeletons from Emericella sp. XL029. Organic & Biomolecular Chemistry, 17(36): 8 450–8 455, https://doi.org/10.1039/C9OB01788G.

    Article  Google Scholar 

  7. Chen L, Hu J S, Xu J L, Shao C L, Wang G Y. 2018. Biological and chemical diversity of ascidian-associated microorganisms. Marine Drugs, 16(10): 362, https://doi.org/10.3390/md16100362.

    Article  Google Scholar 

  8. Da Silva M, Passarini M R Z, Bonugli R C, Sette L D. 2008. Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening. Environmental Technology, 29(12): 1 331–1 339, https://doi.org/10.1080/09593330802379466.

    Article  Google Scholar 

  9. Fredimoses M, Zhou X F, Ai W, Tian X P, Yang B, Lin X P, Liu J, Liu Y H. 2019. Emerixanthone E, a new xanthone derivative from deep sea fungus Emericella sp SCSIO 05240. Natural Product Research, 33(14): 2 088–2 094, https://doi.org/10.1080/14786419.2018.1487966.

    Article  Google Scholar 

  10. Guillen P O, Jaramillo K B, Genta-Jouve G. 2020. Marine natural products from zoantharians: bioactivity, biosynthesis, systematics, and ecological roles. Natural Product Reports, 37(4): 515–540, https://doi.org/10.1039/C9NP00043G.

    Article  Google Scholar 

  11. He Y, Hu Z X, Li Q, Huang J F, Li X N, Zhu H C, Liu J J, Wang J P, Wang J P, Xue Y B, Zhang Y H. 2017. Bioassay-guided isolation of antibacterial metabolites from Emericella sp. TJ29. Journal of Natural Products, 80(9): 2 399–2 405, https://doi.org/10.1021/acs.jnatprod.7b00077.

    Article  Google Scholar 

  12. Jayatilake G S, Thornton M P, Leonard A C, Grimwade J E, Baker B J. 1996. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. Journal of Natural Products, 59(3): 293–296, https://doi.org/10.1021/np960095b.

    Article  Google Scholar 

  13. Jones E B G, Stanley S J, Pinruan U. 2008. Marine endophyte sources of new chemical natural products: a review. Botanica Marina, 51(3): 163–170, https://doi.org/10.1515/BOT.2008.028.

    Article  Google Scholar 

  14. León-Palmero E, Joglar V, Álvarez P A, Martín-Platero A, Llamas I, Reche I. 2018. Diversity and antimicrobial potential in sea anemone and holothurian microbiomes. PLoS One, 13(5): e0196178, https://doi.org/10.1371/journal.pone.0196178.

    Article  Google Scholar 

  15. Li Q, Chen C M, Cheng L, Wei M S, Dai C, He Y, Gong J J, Zhu R Q, Li X N, Liu J J, Wang J P, Zhu H C, Zhang Y H. 2019. Emeridones A-F, a series of 3,5-demethylorsellinic acid-based meroterpenoids with rearranged skeletons from an endophytic fungus Emericella sp. TJ29. The Journal of Organic Chemistry, 84(3): 1 534–1 541, https://doi.org/10.1021/acs.joc.8b02830.

    Article  Google Scholar 

  16. Liu C L, Tian L, Li G Y. 2001. The fungi from anemones in the intertidal zone of Qingdao sea area and the antimicrobial substance they produced. Chinese Journal of Marine Drugs, 20(6): 1–3, https://doi.org/10.3969/j.issn.1002-3461.2001.06.001. (in Chinese with English abstract)

    Google Scholar 

  17. Liu S, Ahmed S, Zhang C G, Liu T X, Shao C L, Fang Y W. 2020. Diversity and antimicrobial activity of culturable fungi associated with sea anemone Anthopleura xanthogrammica. Electronic Journal of Biotechnology, 44: 41–46, https://doi.org/10.1016/j.ejbt.2020.01.003.

    Article  Google Scholar 

  18. López-Legentil S, Erwin P M, Turon M, Yarden O. 2015. Diversity of fungi isolated from three temperate ascidians. Symbiosis, 66(2): 99–106, https://doi.org/10.1007/s13199-015-0339-x.

    Article  Google Scholar 

  19. Malmstrøm J, Christophersen, C, Barrero A F, Oltra J E, Justicia J, Rosales A. 2002. Bioactive metabolites from a marine-derived strain of the fungus Emericella variecolor. Journal of Natural Products, 65(3): 364–367, https://doi.org/10.1021/np0103214.

    Article  Google Scholar 

  20. Malmstrøm J. 1999. Unguisins A and B: new cyclic peptides from the marine-derived fungus Emericella unguis. Journal of Natural Products, 62(5): 787–789, https://doi.org/10.1021/np980539z.

    Article  Google Scholar 

  21. Mavrodi D V, Blankenfeldt W, Thomashow L S. 2006. Phenazine compounds in fluorescent Pseudomonas spp. Biosynthesis and regulation. Annual Review of Phytopathology, 44: 417–445, https://doi.org/10.1146/annurev.phyto.44.013106.145710.

    Article  Google Scholar 

  22. Nithyanand P, Indhumathi T, Ravi A V, Pandian S K. 2011. Culture independent characterization of bacteria associated with the mucus of the coral Acropora digitifera from the Gulf of Mannar. World Journal of Microbiology and Biotechnology, 27(6): 1 399–1 406, https://doi.org/10.1007/s11274-010-0591-4.

    Article  Google Scholar 

  23. Oh D C, Kauffman C A, Jensen P R, Fenical W. 2007. Induced production of Emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. Journal of Natural Products, 70(4): 515–520, https://doi.org/10.1021/np060381f.

    Article  Google Scholar 

  24. Pang X J, Zhang S B, Chen H L, Zhao W T, Yang D E, Xian P J, Xu L L, Tao Y D, Fu H Y, Yang X L. 2018. Emericelactones A-D: four novel polyketides produced by Emericella sp. XL 029, a fungus associated the leaves of Panax notoginseng. Tetrahedron Letters, 59(52): 4 566–4 570, https://doi.org/10.1016/j.tetlet.2018.11.032.

    Article  Google Scholar 

  25. Paul V J, Arthur K E, Ritson-Williams R, Ross C, Sharp K. 2007. Chemical defenses: from compounds to communities. The Biological Bulletin, 213(3): 226–251, https://doi.org/10.2307/25066642.

    Article  Google Scholar 

  26. Piel J. 2009. Metabolites from symbiotic bacteria. Natural Product Reports, 26(3): 338–362, https://doi.org/10.1039/B703499G.

    Article  Google Scholar 

  27. Qin X Y, Yang K L, Li J, Wang C Y, Shao C L. 2015. Phylogenetic diversity and antibacterial activity of culturable fungi derived from the zoanthid Palythoa haddoni in the South China Sea. Marine Biotechnology, 17(1): 99–109, https://doi.org/10.1007/s10126-014-9598-4.

    Article  Google Scholar 

  28. Rojko N, Dalla Serra M, Maček P, Anderluh G. 2016. Pore formation by actinoporins, cytolysins from sea anemones. Biochimica et Biophysica Acta (BBA) -Biomembranes, 1858(3):446–456,https://doi.org/10.1016/j.bbamem.2015.09.007.

    Article  Google Scholar 

  29. Saleem M, Ali M S, Hussain S, Jabbar A, Ashraf M, Lee Y S. 2007. Marine natural products of fungal origin. Natural Product Reports, 24(5): 1 142–1 152, https://doi.org/10.1039/b607254m.

    Article  Google Scholar 

  30. Schmidt E W, Donia M S, McIntosh J A, Fricke W F, Ravel J. 2012. Origin and variation of tunicate secondary metabolites. Journal of Natural Products, 75(2): 295–304, https://doi.org/10.1021/np200665k.

    Article  Google Scholar 

  31. Schmidt E W. 2008. Trading molecules and tracking targets in symbiotic interactions. Nature Chemical Biology, 4(8): 466–473, https://doi.org/10.1038/nchembio.101.

    Article  Google Scholar 

  32. Schmidt E. 2009. Bacterial chemical defenses of marine animal hosts. In: White Jr J F, Torres M S eds. Defensive Mutualism in Microbial Symbiosis. Boca Raton: CRC Press, 65–83, https://doi.org/10.1201/9781420069327.ch5.

    Google Scholar 

  33. Shnit-Orland M, Kushmaro A. 2009. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiology Ecology, 67(3): 371–380, https://doi.org/10.1111/j.1574-6941.2008.00644.x.

    Article  Google Scholar 

  34. Thomashow L S, Weller D M, Bonsall R F, Pierson III L S. 1990. Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Applied and Environmental Microbiology, 56(4): 908–912, https://doi.org/10.1128/AEM.56.4.908-912.1990.

    Article  Google Scholar 

  35. Wang F, Tan J W, Liu J K. 2004. Vibratilicin: a novel compound from the basidiomycete Cortinarius vibratilis. Helvetica Chimica Acta, 87(7): 1 912–1 915, https://doi.org/10.1002/hlca.200490170.

    Article  Google Scholar 

  36. Xu Y M, Espinosa-Artiles P, Liu M X, Arnold A E, Gunatilaka A A L. 2013. Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and Emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus. Journal of Natural Products, 76(12): 2 330–2 336, https://doi.org/10.1021/np400762k.

    Article  Google Scholar 

  37. Yang K L, Wei M Y, Shao C L, Fu X M, Guo Z Y, Zheng C J, She Z G, Lin Y C, Wang C Y. 2012. Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp. Journal of Natural Products, 75(5): 935–941, https://doi.org/10.1021/np300103w.

    Article  Google Scholar 

  38. Yue Y, Yu H H, Li R F, Xing R G, Liu S, Li P C. 2015. Exploring the antibacterial and antifungal potential of jellyfish-associated marine fungi by cultivation-dependent approaches. PLoS One, 10(12): e0144394, https://doi.org/10.1371/journal.pone.0144394.

    Article  Google Scholar 

  39. Zhang X Y, Bao J, Wang G H, He F, Xu X Y, Qi S H. 2012. Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea Gorgonians. Microbial Ecology, 64(3): 617–627, https://doi.org/10.1007/s00248-012-0050-x.

    Article  Google Scholar 

  40. Zhang Y L, Li S, Jiang D H, Kong L C, Zhang P H, Xu J D. 2013. Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. Journal of agricultural and Food Chemistry, 61(7): 1 521–1 524, https://doi.org/10.1021/Jf305210u.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Huahua Yu or Pengcheng Li.

Additional information

Data Availability Statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Supported by the National Natural Science Foundation of China (Nos. 41376004, 41406152), the Key Research and Development Project of Shandong Province (No. 2018GHY115008), the Youth Innovation Promotion Association of CAS, and the Scientific and Technological Innovation Project (No. 2015ASKJ02)

Supplementary Materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Yu, H., Li, R. et al. Isolation and identification of antimicrobial metabolites from sea anemone-derived fungus Emericella sp. SMA01. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0203-6

Download citation

Keyword

  • sea anemone
  • symbiotic fungi
  • phenazine-1-carboxylic acid
  • antimicrobial activity