Mesoscale wind stress-SST coupling induced feedback to the ocean in the western coast of South America

Abstract

The feedback induced by mesoscale wind stress-SST coupling to the ocean in the western coast of South America was studied using the Regional Ocean Modeling System (ROMS). To represent the feedback, an empirical mesoscale wind stress perturbation model was constructed from satellite observations, and was incorporated into the ocean model. Comparing two experiments with and without the mesoscale wind stress-SST coupling, it was found that SST in the mesoscale coupling experiment was reduced in the western coast of South America, with the maximum values of 0.5 °C in the Peru Sea and 0.7 °C in the Chile Sea. A mixed layer heat budget analysis indicates that horizontal advection is the main term that explains the reduction in SST. Specifically, the feedback induced by mesoscale wind stress-SST coupling to the ocean can enhance vertical velocity in the nearshore area through the Ekman pumping, which brings subsurface cold water to the sea surface. These results indicate that the feedback due to the mesoscale wind stress-SST coupling to the ocean has the potential for reducing the warm SST bias often seen in the large-scale climate model simulations in this region.

This is a preview of subscription content, access via your institution.

References

  1. Albert A, Echevin V, Lévy M, Aumont O. 2010. Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. J. Geophys. Res.: Oceans, 115(C12): C12033, https://doi.org/10.1029/2010JC006569.

    Article  Google Scholar 

  2. Bakun A. 1990. Global climate change and intensification of coastal ocean upwelling. Science, 247(4939): 198–201, https://doi.org/10.1126/science.247.4939.198.

    Article  Google Scholar 

  3. Bourras D, Reverdin G, Giordani H, Caniaux G. 2004. Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J. Geophys. Res.: Atmos., 109(D18):D18114, https://doi.org/10.1029/2004JD004799.

    Article  Google Scholar 

  4. Bryan F O, Tomas R, Dennis J M, Chelton D B, Loeb N G, McClean J L. 2010. Frontal scale air-sea interaction in high-resolution coupled climate models. J. Climate, 23(23): 6 277–6 291, https://doi.org/10.1175/2010JCLI3665.1.

    Article  Google Scholar 

  5. Castelao R M. 2012. Sea surface temperature and wind stress curl variability near a cape. J. Phys. Oceanogr, 42(11): 2 073–2 087, https://doi.org/10.1175/JPO-D-11-0224.1.

    Article  Google Scholar 

  6. Chavez F P, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J. 2008. The northern Humboldt Current system: brief history, present status and a view towards the future. Prog. Oceanogr, 79(2–4): 95–105, https://doi.org/10.1016/j.pocean.2008.10.012.

    Article  Google Scholar 

  7. Chelton D B, Esbensen S K, Schlax M G, Thum N, Freilich M H, Wentz F J, Gentemann C L, McPhaden M J, Schopf P S. 2001. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14(7): 1 479–1 498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    Article  Google Scholar 

  8. Chelton D B, Schlax M G, Freilich M H, Milliff R F. 2004. Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303(5660): 978–983, https://doi.org/10.1126/science.1091901.

    Article  Google Scholar 

  9. Chelton D B, Schlax M G, Samelson R M. 2007. Summertime coupling between sea surface temperature and wind stress in the California current system. J. Phys. Oceanogr., 37(3): 495–517, https://doi.org/10.1175/JPO3025.1.

    Article  Google Scholar 

  10. Chelton D B, Xie S P. 2010. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23(4): 52–69, https://doi.org/10.5670/oceanog.2010.05.

    Article  Google Scholar 

  11. Cleveland W S, Devlin S J. 1988. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc, 83(403): 596–610, https://doi.org/10.2307/2289282.

    Article  Google Scholar 

  12. Cui C R, Zhang R H, Wang H N, Wei Y Z. 2020. Representing surface wind stress response to mesoscale SST perturbations in western coast of South America using Tikhonov regularization method. J. Oceanol. Limnol., 38(3): 679–694, https://doi.org/10.1007/s00343-019-9042-8.

    Article  Google Scholar 

  13. Davey M, Huddleston M, Sperber K, Braconnot P, Bryan F, Chen D, Colman R, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Latif M, Le Treut H, Li T, Manabe S, Mechoso C, Meehl G, Power S, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Yukimoto S, Zebiak S. 2002. STOIC: a study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18(5): 403–420, https://doi.org/10.1007/s00382-001-0188-6.

    Article  Google Scholar 

  14. Desbiolles F, Blamey R, Illig S, James R, Barimalala R, Renault L, Reason C. 2018. Upscaling impact of wind/sea surface temperature mesoscale interactions on southern Africa austral summer climate. Int. J. Climatol., 38(12): 4 651–4 660, https://doi.org/10.1002/joc.5726.

    Article  Google Scholar 

  15. Frenger I, Gruber N, Knutti R, Münnich M. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci, 6(8): 608–612, https://doi.org/10.1038/ngeo1863.

    Article  Google Scholar 

  16. Gao J X, Zhang R H, Wang H N. 2019. Mesoscale SST perturbation-induced impacts on climatological precipitation in the Kuroshio-Oyashio extension region, as revealed by the WRF simulations. J. Oceanol. Limnol., 37(2): 385–397, https://doi.org/10.1007/s00343-019-8065-5.

    Article  Google Scholar 

  17. Gaube P, Chelton D B, Samelson R M, Schlax M G, O’Neill L W. 2015. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45(1): 104–132, https://doi.org/10.1175/JPO-D-14-0032.1.

    Article  Google Scholar 

  18. Haidvogel D B, Arango H, Budgell W P, Cornuelle B D, Curchitser E, Di Lorenzo E, Fennel K, Geyer W R, Hermann A J, Lanerolle L, Levin J, McWilliams J C, Miller A J, Moore A M, Powell T M, Shchepetkin A F, Sherwood C R, Signell R P, Warner J C, Wilkin J. 2008. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 227(7): 3 595–3 624, https://doi.org/10.1016/j.jcp.2007.06.016.

    Article  Google Scholar 

  19. Hogg A M C, Dewar W K, Berloff P, Kravtsov S, Hutchinson D K. 2009. The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation. J. Climate, 22(15): 4 066–4 082, https://doi.org/10.1175/2009JCLI2629.1.

    Article  Google Scholar 

  20. Hu Z Z, Huang B H, Hou Y T, Wang W Q, Yang F L, Stan C, Schneider E K. 2011. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system. Climate Dyn., 36(9–10): 1 795–1 811, https://doi.org/10.1007/s00382-010-0797-z.

    Article  Google Scholar 

  21. Huang B H, Hu Z Z, Jha B. 2007. Evolution of model systematic errors in the tropical Atlantic basin from coupled climate hindcasts. Climate Dyn., 28(7–8): 661–682, https://doi.org/10.1007/s00382-006-0223-8.

    Article  Google Scholar 

  22. Huang B Y, Xue Y, Zhang D X, Kumar A, McPhaden M J. 2010. The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23(18): 4 901–4 925, https://doi.org/10.1175/2010JCLI3373.1.

    Article  Google Scholar 

  23. Jin X, Dong C M, Kurian J, McWilliams J C, Chelton D B, Li Z J. 2009. SST-wind interaction in coastal upwelling: oceanic simulation with empirical coupling. J. Phys. Oceanogr., 39(11): 2 957–2 970, https://doi.org/10.1175/2009JPO4205.1.

    Article  Google Scholar 

  24. Ma C C, Mechoso C R, Robertson A W, Arakawa A. 1996. Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean-atmosphere GCM study. J. Climate, 9(7): 1 635–1 645, https://doi.org/10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.

    Article  Google Scholar 

  25. Ma X H, Jing Z, Chang P, Liu X, Montuoro R, Small R J, Bryan F O, Greatbatch R J, Brandt P, Wu D X, Lin X P, Wu L X. 2016. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613): 533–537, https://doi.org/10.1038/nature18640.

    Article  Google Scholar 

  26. Meehl G A, Covey C, McAvaney B, Latif M, Stouffer R J. 2005. Overview of the coupled model intercomparison project. Bull. Am. Meteor. Soc., 86(1): 89–93, https://doi.org/10.1175/BAMS-86-1-89.

    Article  Google Scholar 

  27. Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani A. 2015. Peru-Chile upwelling dynamics under climate change. J. Geophys. Res.: Oceans, 120(2): 1 152–1 172, https://doi.org/10.1002/2014JC010299.

    Article  Google Scholar 

  28. Oerder V, Colas F, Echevin V, Masson S, Hourdin C, Jullien S, Madec G, Lemarié F. 2016. Mesoscale SST-wind stress coupling in the Peru-Chile current system: which mechanisms drive its seasonal variability? Climate Dyn., 47(7–8): 2 309–2 330, https://doi.org/10.1007/s00382-015-2965-7.

    Article  Google Scholar 

  29. Oerder V, Colas F, Echevin V, Masson S, Lemarié F. 2018. Impacts of the mesoscale ocean-atmosphere coupling on the Peru-Chile ocean dynamics: the current-induced wind stress modulation. J. Geophys. Res.: Oceans, 123(2): 812–833, https://doi.org/10.1002/2017JC013294.

    Article  Google Scholar 

  30. O’Neill L W, Chelton D B, Esbensen S K, Wentz F J. 2005. High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18(14): 2 706–2 723, https://doi.org/10.1175/JCLI3415.1.

    Article  Google Scholar 

  31. O’Neill L W. 2012. Wind Speed and Stability Effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25(5): 1 544–1 569, https://doi.org/10.1175/JCLI-D-11-00121.1.

    Article  Google Scholar 

  32. Penven P, Echevin V, Pasapera J, Colas F, Tam J. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: a modeling approach. J. Geophys. Res.: Ocean, 110(C10): C10021, https://doi.org/10.1029/2005JC002945.

    Article  Google Scholar 

  33. Piazza M, Terray L, Boé J, Maisonnave E, Sanchez-Gomez E. 2016. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model. Climate Dyn., 46(5–6): 1 699–1 717, https://doi.org/10.1007/s00382-015-2669-z.

    Article  Google Scholar 

  34. Seo H, Miller A J, Norris J R. 2016. Eddy-wind interaction in the California Current System: dynamics and impacts. J. Phys. Oceanogr., 46(2): 439–459, https://doi.org/10.1175/JPO-D-15-0086.1.

    Article  Google Scholar 

  35. Seo H. 2017. Distinct influence of air-sea interactions mediated by mesoscale sea surface temperature and surface current in the Arabian Sea. J. Climate, 30(20): 8 061–8 080, https://doi.org/10.1175/JCLI-D-16-0834.1.

    Article  Google Scholar 

  36. Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanol. Acta, 22(1): 1–17, https://doi.org/10.1016/S0399-1784(99)80028-0.

    Article  Google Scholar 

  37. Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit- free-surface, topography-following-coordinate oceanic model. Ocean Model., 9(4): 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    Article  Google Scholar 

  38. Small R J, DeSzoeke S P, Xie S P, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S. 2008. Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45(3–4): 274–319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    Article  Google Scholar 

  39. Song Y H, Haidvogel D. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115(1): 228–244, https://doi.org/10.1006/jcph.1994.1189.

    Article  Google Scholar 

  40. Sweet W, Fett R, Kerling J, La Violette P. 1981. Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon. Wea. Rev., 109(5): 1 042–1 052, https://doi.org/10.1175/1520-0493(1981)109<1042:ASIEIT>2.0.CO;2.

    Article  Google Scholar 

  41. Wajsowicz R C. 1993. A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. J. Comput. Phys., 105(2): 333–338, https://doi.org/10.1006/jcph.1993.1079.

    Article  Google Scholar 

  42. Wei Y Z, Kang X B, Pei Y H. 2018. An empirical tropical instability wave-induced wind stress model in the equatorial Pacific and its incorporation into the ocean model. Atmos. Ocean, 56(5): 350–361, https://doi.org/10.1080/07055900.2018.1549016.

    Article  Google Scholar 

  43. Wei Y Z, Zhang R H, Wang H N. 2017. Mesoscale wind stress-SST coupling in the Kuroshio extension and its effect on the ocean. J. Oceanogr., 73(6): 785–798, https://doi.org/10.1007/s10872-017-0432-2.

    Article  Google Scholar 

  44. Zhang R H. 2014. Effects of tropical instability wave (TIW)-induced surface wind feedback in the tropical Pacific Ocean. Climate Dyn., 42(1–2): 467–485, https://doi.org/10.1007/s00382-013-1878-6.

    Article  Google Scholar 

  45. Zhang R H, Busalacchi A J. 2008. Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific. Geophys. Res. Lett., 35: L05608, https://doi.org/10.1029/2007GL033028.

    Google Scholar 

  46. Zhang R H, Li Z X, Zhu J S, Kang X B, Min J Z. 2014. Impact of tropical instability waves-induced SST forcing on the atmosphere in the tropical Pacific, evaluated using CAM5.1. Atmos. Sci. Lett., 15(3): 186–194, https://doi.org/10.1002/asl2.488.

    Article  Google Scholar 

  47. Zhang R H, Yu Y Q, Song Z Y, Ren H L, Tang Y M, Qiao F L, Wu T W, Gao C, Hu J Y, Tian F, Zu Y C, Chen L, Liu H L, Lin P F, Wu F H, Wang L. 2020. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. J. Oceanol. Limnol., 38(4): 930–961, https://doi.org/10.1007/s00343-020-0157-8.

    Article  Google Scholar 

  48. Zhu Y C, Zhang R H. 2018. An Argo-derived background diffusivity parameterization for improved ocean simulations in the tropical Pacific. Geophys. Res. Lett., 45(3): 1 509–1 517, https://doi.org/10.1002/2017GL076269.

    Article  Google Scholar 

  49. Zhu Y C, Zhang R H. 2019. A modified vertical mixing parameterization for its improved ocean and coupled simulations in the tropical Pacific. J. Phys. Oceanogr., 49(1): 21–37, https://doi.org/10.1175/JPO-D-18-0100.1.

    Article  Google Scholar 

  50. Zuidema P, Chang P, Medeiros B, Kirtman B P, Mechoso R, Schneider E K, Toniazzo T, Richter I, Small R J, Bellomo K, Brandt P, de Szoeke S, Farrar J T, Jung E, Kato S, Li M K, Patricola C, Wang ZY, Wood R, Xu Z. 2016. Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans: the U.S. CLIVAR eastern tropical oceans synthesis working group. Bull. Am. Meteor. Soc., 97(12): 2 305–2 328, https://doi.org/10.1175/BAMS-D-15-00274.1.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the anonymous reviewers for their comments that helped to improve the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rong-Hua Zhang.

Additional information

Supported by the National Key Research and Development Program of China (No. 2017YFC1404102 (2017YFC1404100)), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDA19060102, XDB40000000), the National Natural Science Foundation of China (Nos. 41690122 (41690120), 41421005), the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406402), and the Taishan Scholarship

Data Availability Statement

All the satellite data are obtained from the Asia-Pacific Data-Research Center (APDRC) of the University of Hawaii, which is available at http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=1. The model data and computer codes used in this paper are available from the authors (e-mail: rzhang@qdio.ac.cn).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Zhang, RH., Wei, Y. et al. Mesoscale wind stress-SST coupling induced feedback to the ocean in the western coast of South America. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0182-7

Download citation

Keyword

  • mesoscale air-sea coupling
  • western coast of South America
  • ocean model simulations
  • cooling effect
  • warm bias