Species-specific detection and quantification of scyphomedusae in Jiaozhou Bay, China, using a quantitative real-time PCR assay

Abstract

Over the past decades, jellyfish occurred increasingly and abundantly in coastal areas worldwide. Usually, biomass of jellyfish, especially when they bloom, can be determined by visual counting. However, tiny individuals of jellyfish (e.g., planulae, polyps, and ephyrae) are difficult to detect in the field. In this study, species-specific quantitative real-time PCR assays (qPCR) (SYBR Green I) targeting the mitochondrial 16S rDNA (mt-16S rDNA) of jellyfish were developed and were used to estimate the distribution and seasonal fluctuations of four jellyfish species (Nemopilema nomurai, Cyanea nozakii, Rhopilema esculentum, and Aurelia coerulea) in Jiaozhou Bay (JZB), China in 2013. The mt-16S rDNA of A. coerulea and N. nomurai was detected in most of the survey months and it peaked in July (1.03×104 copies/L) and September (1.08×106 copies/L), respectively. The mt-16S rDNA of C. nozakii occurred from August to October only with monthly mean values of 7.18–46.17 copies/L and was mainly located from the middle part to the outer part of the bay. The mt-16S rDNA of R. esculentum was the least abundant among the four species and was detected in only one sample (B2 station in March), with a value of 88.49 copies/L. The Spearman correlation test revealed that phytoplankton biomass was significantly and positively correlated with the mt-16S rDNA abundance of A. coerulea (R=0.37, P<0.01) and negatively with the mt-16S rDNA of N nomurai (R=-0.36, P<0.01). The qPCR assay will enable the identification and quantification of jellyfish species in their whole life history and can be used as an approach in combination of the traditional jellyfish survey.

This is a preview of subscription content, access via your institution.

References

  1. Armani A, Giusti A, Castigliego L, Rossi A, Tinacci L, Gianfaldoni D, Guidi A. 2014. Pentaplex PCR as screening assay for jellyfish species identification in food products. Journal of Agricultural and Food Chemistry, 62(50): 12 134–12 143, https://doi.org/10.1021/jf504654b.

    Article  Google Scholar 

  2. Bayha K M, Graham W M. 2009. A new Taqman© PCR-based method for the detection and identification of scyphozoan jellyfish polyps. Hydrobiologia, 616(1): 217–228, https://doi.org/10.1007/s10750-008-9590-y.

    Article  Google Scholar 

  3. Bridge D, Cunningham C W, Schierwater B, DeSalle R O B, Buss L W. 1992. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proceedings of the National Academy of Sciences of the United States of America, 89(18): 8 750–8 753, https://doi.org/10.1073/pnas.89.18.8750.

    Article  Google Scholar 

  4. Condon R H, Duarte C M, Pitt K A, Robinson K L, Lucas C H, Sutherland K R, Mianzan H W, Bogeberg M, Purcell J E, Decker M B, Uye S I, Madin L P, Brodeur R D, Haddock S H D, Malej A, Parry G D, Eriksen E, Quiñones J, Acha M, Harvey M, Arthur J M, Graham W M. 2013. Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences of the United States of America, 110(3): 1 000–1 005, https://doi.org/10.1073/pnas.1210920110.

    Article  Google Scholar 

  5. Di Camillo C G, Betti F, Bo M, Martinelli M, Puce S, Bavestrello G. 2010. Contribution to the understanding of seasonal cycle of Aurelia aurita (Cnidaria: Scyphozoa) scyphopolyps in the northern Adriatic Sea. Journal of the Marine Biological Association of the United Kingdom, 90(6): 1 105–1 110, https://doi.org/10.1017/S0025315409000848.

    Article  Google Scholar 

  6. Ding F Y, Chen J H. 2007. Dynamic distribution of Stomolophus meleagris in the East China Sea region. Journal of Fishery Sciences of China, 14(1): 83–89. (in Chinese with English abstract)

    Google Scholar 

  7. Dong Z J, Liu D Y, Keesing J K. 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin, 60(7): 954–963, https://doi.org/10.1016/j.marpolbul.2010.04.022.

    Article  Google Scholar 

  8. Dong Z J, Wang L, Sun T T, Liu Q Q, Sun Y F. 2018. Artificial reefs for sea cucumber aquaculture confirmed as settlement substrates of the moon jellyfish Aurelia coerulea. Hydrobiologia, 818(1): 223–234, https://doi.org/10.1007/s10750-018-3615-y.

    Article  Google Scholar 

  9. Feng S, Wang S W, Sun S, Zhang F, Zhang G T, Liu M T, Uye S I. 2018. Strobilation of three scyphozoans (Aurelia coelurea, Nemopilema nomurai, and Rhopilema esculentum) in the field at Jiaozhou Bay, China. Marine Ecology Progress Series, 591: 141–153, https://doi.org/10.3354/meps12276.

    Article  Google Scholar 

  10. Feng S, Wang S W, Zhang G T, Sun S, Zhang F. 2017. Selective suppression of in situ proliferation of scyphozoan polyps by biofouling. Marine Pollution Bulletin, 114(2): 1 046–1 056, https://doi.org/10.1016/j.marpolbul.2016.10.062.

    Article  Google Scholar 

  11. Gong S H, Ding Y F, Wang Y, Jiang G Z, Zhu C. 2018. Advances in DNA barcoding of toxic marine organisms. International Journal of Molecular Sciences, 19(10): 2931, https://doi.org/10.3390/ijms19102931.

    Article  Google Scholar 

  12. Gröndahl F. 1988. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Marine Biology, 97(4): 541–550, https://doi.org/10.1007/BF00391050.

    Article  Google Scholar 

  13. Holst S. 2012. Morphology and development of benthic and pelagic life stages of North Sea jellyfish (Scyphozoa, Cnidaria) with special emphasis on the identification of ephyra stages. Marine Biology, 159(12): 2 707–2 722, https://doi.org/10.1007/s00227-012-2028-0.

    Article  Google Scholar 

  14. Iguchi N, Iwatani H, Sugimoto K, Kitajima S, Honda N, Katoh O. 2017. Biomass, body elemental composition, and carbon requirement of Nemopilema nomurai (Scyphozoa: Rhizostomeae) in the southwestern Japan Sea. Plankton and Benthos Research, 12(2): 104–114, https://doi.org/10.3800/pbr.12.104.

    Article  Google Scholar 

  15. Ki J S, Hwang D S, Lee J S. 2010. Simultaneous detection of Aurelia and Chrysaora scyphozoan jellyfish on a DNA microarray. Journal of the Marine Biological Association of the United Kingdom, 90(6): 1 111–1 117, https://doi.org/10.1017/S0025315409990373.

    Article  Google Scholar 

  16. Lamb P D, Hunter E, Pinnegar J K, Creer S, Davies R G, Taylor M I. 2017. Jellyfish on the menu: mtDNA assay reveals scyphozoan predation in the Irish Sea. Royal Society Open Science, 4(11): 171421, https://doi.org/10.1098/rsos.171421.

    Article  Google Scholar 

  17. Li J S, Ling J Z, Cheng J H. 2012. Distribution of Nemopilema nomurai and its relationship with bottom temperature and salinity in north East China Sea and south Yellow Sea in autumn. Marine Fisheries, 34(4): 371–378. (in Chinese with English abstract)

    Google Scholar 

  18. Liu Z Y, Dong Z J, Liu D Y. 2016. Development of a rapid assay to detect the jellyfish Cyanea nozakii using a loop-mediated isothermal amplification method. Mitochondrial DNA Part A, 27(4): 2 318–2 322, https://doi.org/10.3109/19401736.2015.1022762.

    Article  Google Scholar 

  19. Lv T J. 2018. Assessment of Important Fishery Resources in the South Offshore of Shandong from 2010 to 2017. Yantai University, Yantai. 55p. (in Chinese with English abstract)

    Google Scholar 

  20. Marques R, Darnaude A M, Crochemore S, Bouvier C, Bonnet D. 2019. Molecular approach indicates consumption of jellyfish by commercially important fish species in a coastal Mediterranean lagoon. Marine Environmental Research, 152: 104 787, https://doi.org/10.1016/j.marenvres.2019.104787.

    Article  Google Scholar 

  21. Matsushita Y, Suzuki H, Kajikawa Y. 2011. Tracking vertical movement of the moon jelly Aurelia aurita using a micro data logger. Fisheries Engineering, 47(3): 197–206, https://doi.org/10.18903/fisheng.47.3_197.

    Google Scholar 

  22. Mills C E. 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451(1–3): 55–68, https://doi.org/10.1023/A:1011888006302.

    Article  Google Scholar 

  23. Minamoto T, Fukuda M, Katsuhara K R, Fujiwara A, Hidaka S, Yamamoto S, Takahashi K, Masuda R. 2017. Environmental DNA reflects spatial and temporal jellyfish distribution. PLoS One, 12(2): e0173073, https://doi.org/10.1371/journal.pone.0173073.

    Article  Google Scholar 

  24. Miyake H, Iwao K, Kakinuma Y. 1997. Life history and environment of Aurelia aurita. South Pacific Study, 17(2): 273–285.

    Google Scholar 

  25. Møller L F, Riisgård H U. 2007. Impact of jellyfish and mussels on algal blooms caused by seasonal oxygen depletion and nutrient release from the sediment in a Danish fjord. Journal of Experimental Marine Biology and Ecology, 351(1–2): 92–105, https://doi.org/10.1016/j.jembe.2007.06.026.

    Article  Google Scholar 

  26. Morais P, Parra M P, Marques R, Cruz J, Angélico M M, Chainho P, Costa J L, Barbosa A B, Teodósio M A, Notes A. 2015. What are jellyfish really eating to support high ecophysiological condition? Journal of Plankton Research, 37(5): 1 036–1 041, https://doi.org/10.1093/plankt/fbv044.

    Article  Google Scholar 

  27. Pitt K A, Welsh D T, Condon R H. 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia, 616(1): 133–149, https://doi.org/10.1007/s10750-008-9584-9.

    Article  Google Scholar 

  28. Purcell J E, Uye S I, Lo W T. 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series, 350: 153–174, https://doi.org/10.3354/meps07093.

    Article  Google Scholar 

  29. Purcell J E. 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom, 85(3): 461–476, https://doi.org/10.1017/S0025315405011409.

    Article  Google Scholar 

  30. R Core Team. 2008. R: a language and environment for statistical computing. Austria: The R Project for Statistical Computing. Available at http://www.R-project.org/. Accessed on 2020-04-12.

  31. Richardson A J, Bakun A, Hays G C, Gibbons M J. 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution, 24(6): 312–322, https://doi.org/10.1016/j.tree.2009.01.010.

    Article  Google Scholar 

  32. Russell F S. 1970. The Medusae of the British Isles. Volume II. Pelagic Scyphozoa, with A Supplement to the First Volume on Hydromedusae. Cambridge University Press, New York. 284p.

    Google Scholar 

  33. Song L, Song G J, Jiang B. 2017. Marine ecological disasters and their distribution in Liaoning coastal waters. Fishery Science, 36(1): 118–124. (in Chinese with English abstract)

    Google Scholar 

  34. Straehler-Pohl I, Jarms G. 2010. Identification key for young ephyrae: a first step for early detection of jellyfish blooms. Hydrobiologia, 645(1): 3–21, https://doi.org/10.1007/s10750-010-0226-7.

    Article  Google Scholar 

  35. Sun S, Zhang F, Li C L, Wang S W, Wang M X, Tao Z C, Wang Y T, Zhang G T, Sun X X. 2015. Breeding places, population dynamics, and distribution of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in the Yellow Sea and the East China Sea. Hydrobiologia, 754(1): 59–74, https://doi.org/10.1007/s10750-015-2266-5.

    Article  Google Scholar 

  36. Sun S, Zhang Y S, Wu Y L, Zhang G T, Zhang F, Pu X M. 2005. Annual variation of primary productivity in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 36(6): 481–486. (in Chinese with English abstract)

    Google Scholar 

  37. Sun S. 2012. New perception of jellyfish bloom in the East China Sea and Yellow Sea. Oceanologia et Limnologia Sinica, 43(3): 406–410. (in Chinese with English abstract)

    Google Scholar 

  38. Takasu H, Inomata H, Uchino K, Tahara S, Mori K, Hirano Y, Harada K, Yamaguchi M, Nozoe Y, Akiyama H. 2019. Spatio-temporal distribution of environmental DNA derived from Japanese sea nettle jellyfish Chrysaora pacifica in Omura Bay, Kyushu, Japan. Plankton Benthos Research, 14(4): 320–323, https://doi.org/10.3800/pbr.14.320.

    Article  Google Scholar 

  39. Uye S I. 2014. The giant jellyfish Nemopilema nomurai in East Asian marginal seas. In: Pitt K A, Lucas C H eds. Jellyfish Blooms. Springer, Dordrecht. p.185–205.

    Google Scholar 

  40. Wan A Y, Zhang G T. 2012. Annual occurrence of moon jellyfish Aurelia sp. 1 in the Jiaozhou Bay and its impacts on zooplankton community. Oceanologia et Limnologia Sinica, 43(3): 494–501. (in Chinese with English abstract)

    Google Scholar 

  41. Wang B, Li Y L, Shen H, Li Y P, Wang W B, Sun M, Dong J. 2014. Quantity distribution of Cyanea nozakii in inshore waters of northern Liaodong Bay, Bohai Sea in 2005–2013. Marine Fisheries, 36(2): 146–154. (in Chinese with English abstract)

    Google Scholar 

  42. Wang J Y, Zhen Y, Mi T Z, Yu Z G, Wang G S. 2015. Development of a real-time PCR assay (SYBR Green I) for rapid identification and quantification of scyphomedusae Aurelia sp. 1 planulae. Chinese Journal of Oceanology and Limnology, 33(4): 974–987, https://doi.org/10.1007/s00343-015-4091-0.

    Article  Google Scholar 

  43. Wang P P, Zhang F, Sun S, Yang T. 2020. Distribution of giant jellyfish in the Bohai Sea in June 2018. Oceanologia et Limnologia Sinica, 51(1): 85–94. (in Chinese with English abstract)

    Google Scholar 

  44. Wang S W, Zhang G T, Sun S, Wang Y T, Zhao Z X. 2012. Population dynamics of three scyphozoan jellyfish species during summer of 2011 in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 43(3): 471–479. (in Chinese with English abstract)

    Google Scholar 

  45. Wang Y T, Sun S. 2015. Population dynamics of Aurelia sp. 1 ephyrae and medusae in Jiaozhou Bay, China. Hydrobiologia, 754(1): 147–155, https://doi.org/10.1007/s10750-014-2021-3.

    Article  Google Scholar 

  46. Zhang F, Su S, Li C L. 2017. Estimation on food requirement by large jellyfish Nemopilema nomurai in summer. Oceanologia et Limnologia Sinica, 48(6): 1 355–1 361. (in Chinese with English abstract)

    Google Scholar 

  47. Zhang F. 2008. Zooplanktivorous gelatinous taxa: medusas in the Yellow Sea and East China Sea. The Institute of Oceanography, Chinese Academy of Sciences, Qingdao, Shandong. 130p. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgment

Sincere thanks are given to staff at the Jiaozhou Bay National Marine Ecosystem Research Station (http://jzb.cern.ac.cn/) for providing the environmental data and for the kind help that they provided during the on-board water sampling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Zhen.

Additional information

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

Supported by the National Key Research and Development Program of China (Nos. 2017YFC1404404, 2017YFC1404402), the National Natural Science Foundation of China (No. 41906112), and the Scientific and Technological Innovation Project of the Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ02)

Supplementary Materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Mi, T., Yu, Z. et al. Species-specific detection and quantification of scyphomedusae in Jiaozhou Bay, China, using a quantitative real-time PCR assay. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0160-0

Download citation

Keyword

  • jellyfish bloom
  • Aurelia coerulea
  • Nemopilema nomurai
  • Cyanea nozakii
  • Rhopilema esculentum
  • mitochondrial 16S rDNA