Geochemistry of the upper Permian sandstones in the Dalong Formation in the South Yellow Sea Basin, East China: implications to provenance, weathering, and tectonic setting

Abstract

To reconstruct the paleoenvironment, the petrography and geochemical compositions of the upper Permian Dalong Formation (Fm) (P3d) sandstones in the Central Uplift, South Yellow Sea Basin, was investigated, after which the provenance, tectonic setting, weathering conditions, and diagenetic history were determined. The Dalong Fm is mainly composed of sandstones with a few mudstones and limestones. The petrographic analysis showed that the P3d sandstones are in low maturity and could be classified into feldspar sandstone and lithic sandstone on average framework composition of Q63F16L21. The major and trace element results show that Dalong Fm sandstones are enriched in Rb and depleted in Cr and Ni compared with the upper continental crust (UCC). The chemical weathering intensity is weak to low moderate in the source area as indicated by the chemical index of alteration (CIA) and other results from a variety of methods. The diagenetic process included three main stages: eodiagenesis, mesodiagenesis, and telodiagenesis. Tectonic discrimination plots show that the source areas were an active continental margin (ACM) and a passive continental margin (PCM), which may have been related to the northward movement of the Lower Yangtze Plate (LYP) and the collision between the LYP and the North China Plate (NCP).

This is a preview of subscription content, access via your institution.

References

  1. Absar N, Sreenivas B. 2015. Petrology and geochemistry of greywackes of the ∼1.6 Ga Middle Aravalli Supergroup, northwest India: evidence for active margin processes. International Geology Review, 57(2): 134–158.

    Article  Google Scholar 

  2. Ahn J H, Peacor D. R, Coombs D S. 1988. Formation mechanisms of illite, chlorite and mixed-layer illitechlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zealand. Contributions to Mineralogy and Petrology, 99(1): 82–89.

    Article  Google Scholar 

  3. Armstrong-Altrin J S, Lee Y I, Verma S P, Ramasamy S. 2004. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74(2): 285–297.

    Article  Google Scholar 

  4. Armstrong-Altrin J S, Lee Y I, Verma S P, Worden R H. 2009. Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper miocene kudankulam formation, southern india: implications for paleoenvironment and diagenesis. Chemie der Erde — Geochemistry — Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology, 69(1): 45–60.

    Article  Google Scholar 

  5. Armstrong-Altrin J S, Machain-Castillo M L, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza J A, Ruíz-Fernandez A C. 2015. Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95: 15–26.

    Article  Google Scholar 

  6. Armstrong-Altrin J S, Machain-Castillo M L. 2016. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71: 182–200.

    Article  Google Scholar 

  7. Armstrong-Altrin J S, Ramasamy S, Makhnach A. 2001. Stable isotope geochemistry and evidence for meteoric diagenesis in Kudankulam Formation, Tamil Nadu. Geological Society of India Journal, 57: 39–48.

    Google Scholar 

  8. Armstrong-Altrin J S. 2015. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57(11–12): 1 446–1 461.

    Article  Google Scholar 

  9. Berner R A. 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291(4): 339–376.

    Article  Google Scholar 

  10. Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181–193.

    Article  Google Scholar 

  11. Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91(6): 611–627.

    Article  Google Scholar 

  12. Bjφprlykke K, Aagaard P. 1992. Clay minerals in North Sea Sandstones. In: Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, Houseknecht D.W., Pittrnan E.D. (Ed.). SEPM Special Publication, 47: 65–80.

  13. Cai L X, Guo X W, Zhang X H, Zeng Z G, Xiao G L, Pang Y M, Wang S P. 2020. Pore-throat structures of the Permian Longtan Formation tight sandstones in the South Yellow Sea Basin, China: a case study from borehole CSDP-2. Journal of Petroleum Science and Engineering, 186: 106733.

    Article  Google Scholar 

  14. Cai L X, Xiao G L, Guo X W, Wang J, Wu Z Q, Li B G. 2019. Assessment of Mesozoic and Upper Paleozoic source rocks in the South Yellow Sea Basin based on the continuous borehole CSDP-2. Marine and Petroleum Geology, 101: 30–42.

    Article  Google Scholar 

  15. Condie K C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1–4): 1–37.

    Article  Google Scholar 

  16. Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(4): 2 919–2 940.

    Article  Google Scholar 

  17. Cullers R L, Basu A, Sutter L J. 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology, 70: 335–348.

    Article  Google Scholar 

  18. Cullers R L, Chaudhuri S, Arnold B, Lee M, Wolf C W Jr. 1975. Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochimica et Cosmochimica Acta, 39(12): 1 691–1 703.

    Article  Google Scholar 

  19. Cullers R L. 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22): 4 955–4 972.

    Article  Google Scholar 

  20. Cullers R L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51(3): 181–203.

    Article  Google Scholar 

  21. Cullers R, Chaudhuri S, Kilbane N, Koch R. 1979. Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochimica et Cosmochimica Acta, 43(8): 1 285–1 301.

    Article  Google Scholar 

  22. Dai C S. 2011. Oil Gas Basin Group of China Seas and Early Resource Assessment Techniques. Ocean Press, Beijing, China. p.85–86. (in Chinese)

    Google Scholar 

  23. Das B K, Al-Mikhlafi A S, Kaur P. 2006. Geochemistry of Mansar lake sediments, Jammu, India: implication for source-area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences, 26(6): 649–668.

    Article  Google Scholar 

  24. Dickinson W R, Beard L S, Brakenridge G R, Erjavec J L, Ferguson R C, Inman K F, Knepp R A, Lindberg F A, Ryberg P T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. GSA Bulletin, 94(2): 222–235.

    Article  Google Scholar 

  25. Dickinson W R. 1970. Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research, 40(2): 695–707.

    Google Scholar 

  26. Etemad-Saeed N, Hosseini-Barzi M, Adabi M H, Miller N R, Sadeghi A, Houshmandzadeh A, Stockli D F. 2016. Evidence for ca. 560 Ma Ediacaran glaciation in the Kahar formation, central Alborz Mountains, northern Iran. Gondwana Research, 31: 164–183.

    Article  Google Scholar 

  27. Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921–924.

    Article  Google Scholar 

  28. Feng R, Kerrich R. 1990. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54(4): 1 061–1 081.

    Article  Google Scholar 

  29. Folk R L. 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin. p.45–50.

    Google Scholar 

  30. Garver J I, Royce P R, Smick T A. 1996. Chromium and nickel in shale of the Taconic Foreland: A case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66: 100–106.

    Google Scholar 

  31. Goddéris Y, Donnadieu Y, Le Hir G, Lefebvre V, Nardin E. 2014. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews, 128: 122–138.

    Article  Google Scholar 

  32. Gromet L P, Haskin L A, Korotev R L, Dymek R F. 1984. The “North American shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48(12): 2 469–2 482.

    Article  Google Scholar 

  33. Guo X W, Xu H H, Zhu X Q, Pang Y M, Zhang X H, Lu H N. 2017. Discovery of Late Devonian plants from the southern Yellow Sea borehole of China and its palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 531: 108444.

    Article  Google Scholar 

  34. Hao T Y, Huang S, Xu Y, Li Z W, Zhang L L, Wang J L, Suh M, Kim K. 2010. Geophysical understandings on deep structure in Yellow Sea. Chinese Journal of Geophysics, 53(6): 1 315–1 326. (in Chinese with English abstract)

    Google Scholar 

  35. Herron M M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58(5): 820–829.

    Google Scholar 

  36. Hou F H, Zhang Z X, Zhang X H, Li S Z, Li G, Guo X W, Tian Z X. 2008. Geologic evolution and tectonic styles in the South Yellow Sea Basin. Marine Geology & Quaternary Geology, 28(5): 61–68. (in Chinese with English abstract)

    Google Scholar 

  37. Huang T K. 1960. The main characteristics of the geologic structure of China: preliminary conclusions. Acta Geologica Sinica, 40(1): 32–37.

    Google Scholar 

  38. Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B, Mahabaleswar B. 2000. Late Archaean (2550-2520 Ma) juvenile magmatism in the eastern Dharwar craton, Southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research, 99(3–4): 225–254.

    Article  Google Scholar 

  39. Jiang N Y, Jia R F, Wang Z Y, Qi D, Yu Z, He Y, Zhu Z L. 1994. Permian Palaeogeography and Geochemical Environment in Lower Yangtze Region, China. Petroleum Industry Press, Beijing, China. p.15–47. (in Chinese)

    Google Scholar 

  40. Jin Y G, Shang Q H, Cao C Q. 2000. A review of Permian stratigraphy. Journal of Stratigraphy, 24(2): 99–108. (in Chinese with English abstract)

    Google Scholar 

  41. Johnsson M J, Basu A. 1993. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Boulde. 342p.

    Google Scholar 

  42. Lemon N M, Cubitt C J. 2003. Illite fluorescence microscopy: a new technique in the study of illite in the Merrimelia Formation, Cooper Basin, Australia. In: Worden R H, Morad S eds. Clay Mineral Cements in Sandstones. International Association of Sedimentologists, Malden. p.411–424.

    Google Scholar 

  43. Liang D G, Guo T L, Chen J P, Bian L Z, Zhao Z. 2008. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 1): distribution of four suits of regional marine source rocks. Marine Origin Petroleum Geology, 13(2): 1–16. (in Chinese with English abstract)

    Google Scholar 

  44. McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson M J, Basu A eds. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, London. p.21–40.

    Google Scholar 

  45. McLennan S M, Nance W B, Taylor S R. 1980. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochimica et Cosmochimica Acta, 44(11): 1 833–1 839.

    Article  Google Scholar 

  46. McLennan S M, Taylor S R, McCulloch M T, Maynard J B. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54(7): 2 015–2 050.

    Article  Google Scholar 

  47. McLennan S M, Taylor S R. 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. The Journal of Geology, 99(1): 1–21.

    Article  Google Scholar 

  48. McLennan S M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169–200.

    Google Scholar 

  49. McLennan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4): 2000GC000109, https://doi.org/10.1029/2000gc000109.

    Article  Google Scholar 

  50. Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715–717.

    Article  Google Scholar 

  51. Pan G T, Lu S N, Xiao Q H, Zhang K X, Yin F G, Hao G J, Luo M S, Ren F, Yuan S H. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 1–23. (in Chinese with English abstract)

    Google Scholar 

  52. Pang Y M, Guo X W, Han Z Z, Zhang X H, Zhu X Q, Hou F H, Han C, Song Z G, Xiao G L. 2019. Mesozoic-Cenozoic denudation and thermal history in the Central Uplift of the South Yellow Sea basin and the implications for hydrocarbon systems: constraints from the CSDP-2 borehole. Marine and Petroleum Geology, 99: 355–369.

    Article  Google Scholar 

  53. Pang Y M, Zhang X H, Guo X W, Xiao G L, Han Z Z. 2017a. Basin modeling in the initial stage of exploration: a case study from the north subbasin of the south Yellow Sea Basin. Acta Oceanologica Sinica, 36(9): 65–78.

    Article  Google Scholar 

  54. Pang Y M, Zhang X H, Guo X W, Xiao G L, Zhu X Q. 2017b. Mesozoic and Cenozoic tectono-thermal evolution modeling in the northern South Yellow Sea Basin. Chinese Journal of Geophysics, 60(8): 3 177–3 190. (in Chinese with English abstract)

    Google Scholar 

  55. Pettijohn F J, Potter P E, Siever R. 1972. Sand and Sandstone. Springer, New York, https://doi.org/10.1007/978-1-4615-9974-6.

    Google Scholar 

  56. Ramm M, Ryseth A E. 1996. Reservoir quality and burial diagenesis in the Statfjord Formation, North Sea. Petroleum Geoscience, 2(4): 313–324.

    Article  Google Scholar 

  57. Rashid S A, Gana I J A, Masoodi A, Khan F A. 2015. Major and trace element geochemistry of lake sediments, India: Implications for weathering and climate control. Arabian Journal of Geosciences, 8: 10 481–10 496.

    Article  Google Scholar 

  58. Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(5): 635–650.

    Article  Google Scholar 

  59. Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1–2): 119–139.

    Article  Google Scholar 

  60. Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K eds. Treatise on Geochemistry. Elsevier, Amsterdam. 1–64.

    Google Scholar 

  61. Salah M K, El Ghandour M M, Abdel-Hameed A T. 2016. Effect of diagenesis on the petrophysical properties of the Miocene rocks at the Qattara Depression, north Western Desert, Egypt. Arabian Journal of Geosciences, 9(5), https://doi.org/10.1007/s12517-015-2275-8.

  62. Salama W, Anand R R. 2017. Reconstructing the pre-Quaternary landscape in Agnew-Lawlers area, Western Australia with emphasis on the Permo-Carboniferous glaciation and post-glacial weathering. International Journal of Earth Sciences, 106(1): 311–339.

    Article  Google Scholar 

  63. Tao H F, Sun S, Wang Q C, Yang X F, Jiang L. 2013. Provenance and tectonic setting of Late Carboniferous clastic rocks in West Junggar, Xinjiang, China: a case from the Hala-alat Mountains. Journal of Asian Earth Sciences, 64: 210–222.

    Article  Google Scholar 

  64. Tawfik H A, Ghandour I M, Maejima W, Abdel-Hameed A T. 2011. Petrography and geochemistry of the Lower Paleozoic Araba Formation, northern Eastern Desert, Egypt: Implications for provenance, tectonic setting and weathering signature. Journal of Geoscience, 54: 1–16.

    Google Scholar 

  65. Tawfik H A, Ghandour I M, Maejima W, Abdel-Hameed A T. 2012. Petrochemistry of the Lower Cambrian Araba Formation, Taba Area, East Sinai, Egypt. AAPG (American Association of Petroleum Geologists) Annual Convention and Exhibition. Long Beach, California, USA.

    Google Scholar 

  66. Tawfik H A, Ghandour I M, Maejima W, Armstrong-Altrin J S, Abdel-Hameed A M T. 2017a. Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geological Magazine, 154(1): 1–23.

    Article  Google Scholar 

  67. Tawfik H A, Salah M K, Maejima W, Armstrong-Altrin J S, Abdel-Hameed A M T, El Ghandour M M. 2017b. Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt. Geological Journal, 53(5): 1 938–1 953.

    Article  Google Scholar 

  68. Taylor S R, McLennan S M. 1985. The Continental Crust: its Composition and Evolution. Blackwell, Oxford.

    Google Scholar 

  69. Van de Kamp P C, Leake B E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4): 411–449.

    Article  Google Scholar 

  70. Verma S P, Armstrong-Altrin J S. 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332: 1–12.

    Article  Google Scholar 

  71. Wang M J, Zhang X H, Wang A G, Xiao G L, Wang J. 2014. Depositional facies of Longtan and Dalong Formations in the southern depression of South Yellow sea basin. Marine Geology Frontiers, 30(7): 46–50, 65. (in Chinese with English abstract)

    Google Scholar 

  72. Wronkiewicz D J, Condie K C. 1989. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53(7): 1 537–1 549.

    Article  Google Scholar 

  73. Xu H, Zhang H Y, Zhang B L, Yan G J, Shi J, Yang Y Q, Sun H Q, Li J W, Dong G, Lu S S. 2015. Characteristics of the 26 wells from the South Yellow Sea Basin. Marine Geology Frontiers, 31(4): 1–6. (in Chinese with English abstract)

    Google Scholar 

  74. Xu M, Chen J W, Lei B H, Shi J, Liu H. 2019. Tectonic background of Mesozoic foreland basin development in the Southern Yellow Sea. Geoscience, 33(1): 13–24. (in Chinese with English abstract)

    Google Scholar 

  75. Xu X S. 1997. Stratigraphy (Lithostratic) of Jiangsu Province. University of Geosciences Press, Beijing, China. p.46–79. (in Chinese)

    Google Scholar 

  76. Zachos J C, Opdyke B N, Quinn T M, Jones C E, Halliday A N. 1999. Early Cenozoic glaciation, Antarctic weathering, and seawater 87Sr/86Sr: is there a link? Chemical Geology, 161(1–3): 165–180.

    Article  Google Scholar 

  77. Zaid S M. 2015a. Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences, 102: 1–17.

    Article  Google Scholar 

  78. Zaid S M. 2015b. Integrated petrographic, mineralogical, and geochemical study of the Late Cretaceous — Early Tertiary Dakhla Shales, Quseir-Nile Valley Province, central Egypt: Implications for source area weathering, provenance, and tectonic setting. Arabian Journal of Geosciences, 8(11): 9 237–9 259.

    Article  Google Scholar 

  79. Zhang H Q, Chen J W, Li G, Wu Z Q, Zhang Y G. 2009. Discovery from Seismic Survey in Laoshan Uplift of the South Yellow Sea and the Significance. Marine Geology & Quaternary Geology, 29(3): 107–113. (in Chinese with English abstract)

    Google Scholar 

  80. Zhang X H, Guo X W, Wu Z Q, Xiao G L, Zhang X H, Zhu X Q. 2019. Preliminary results and geological significance of Well CSDP-2 in the Central Uplift of South Yellow Sea Basin. Chinese Journal of Geophysics, 62(1): 197–218. (in Chinese)

    Article  Google Scholar 

  81. Zhang X H, Zhang Z X, Lan X H, Li R H. 2013. Regional Geology of the South Yellow Sea. Ocean Press, Beijing. p.1–23. (in Chinese)

    Google Scholar 

  82. Zhou L L, Friis H, Poulsen M L K. 2015. Geochemical evaluation of the Late Paleocene and Early Eocene shales in Siri Canyon, Danish-Norwegian Basin. Marine and Petroleum Geology, 61: 111–122.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xunhua Zhang.

Additional information

Supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2018BD026) and the National Marine Geology Special Project (No. DD20190377)

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author Prof. GUO. The data are not publicly available as they contain information that could compromise research participant privacy.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Guo, X., Zhang, X. et al. Geochemistry of the upper Permian sandstones in the Dalong Formation in the South Yellow Sea Basin, East China: implications to provenance, weathering, and tectonic setting. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0155-x

Download citation

Keyword

  • rock geochemistry
  • rock weathering
  • tectonic setting
  • evolution of rock
  • South Yellow Sea Basin