Nitrate in the Changjiang diluted water: an isotopic evaluation on sources and reaction pathways

Abstract

A cruise covering two transects in the Changjiang (Yangtze) estuary in July 2017 was conducted, aiming to explore the sources for riverine \({\rm{NO}}_3^ - \) and identify reactions involved in the \({\rm{NO}}_3^ - \) transformations along the transport of the Changjiang diluted water (CDW). In the river water, \({\rm{NO}}_3^ - \) was fundamentally contributed by chemical fertilizer leakage in the watershed according to isotope signals. Sewage discharge may also be significant on riverine \({\rm{NO}}_3^ - \) inventory, while the isotope signal was masked by nitrification. Together with the transport of the CDW, \({\rm{NO}}_3^ - \) production was observed in waters with low salinities (>20) and high turbidities. Nitrification resulted from the mineralization of riverine organic nitrogen; therefore, the high turbidity was linked to active production. In the outer plume, coupled with stratification, a significant decrease in \({\rm{NO}}_3^ - \) concentration was observed in the surface water. In parallel, enrichment in \({{\rm{\delta }}^{15}}{\rm{N}} - {\rm{NO}}_3^ - \) and \({{\rm{\delta }}^{18}}{\rm{O}} - {\rm{NO}}_3^ - \) was found, indicating biological consumption by phytoplankton. The difference in the stratification intensity between two transects led to variations in \({\rm{NO}}_3^ - \) concentrations and isotope compositions. In the benthic water, denitrification (sediment-water interface) and nitrification (bottom water) coexisted. Furthermore, accumulations of \({\rm{NH}}_4^ + \) and dissolved organic nitrogen in the bottom water were observed, indicating that nitrification was constrained by oxidant (mainly dissolved oxygen) supplies.

This is a preview of subscription content, access via your institution.

References

  1. Bowes M J, Ings N L, McCall S J, Warwick A, Barrett C, Wickham H D, Harman S A, Armstrong L K, Scarlett P M, Roberts C, Lehmann K, Sing A C. 2012. Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Science of the Total Environment, 434: 201–212, https://doi.org/10.1016/j.scitotenv.2011.09.082.

    Article  Google Scholar 

  2. Cai P H, Shi X M, Hong Q Q, Li Q, Liu L F, Guo X H, Dai M H. 2015. Using 224Ra/228Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River Estuary. Geochimica et Cosmochimica Acta, 170: 188–203, https://doi.org/10.1016/j.gca.2015.08.015.

    Article  Google Scholar 

  3. Casciotti K L, McIlvin M R. 2007. Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. Marine Chemistry, 107(2): 184–201, https://doi.org/10.1016/j.marchem.2007.06.021.

    Article  Google Scholar 

  4. Chang C C Y, Kendall C, Silva S R, Battaglin W A, Campbell D H. 2002. Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Canadian Journal of Fisheries and Aquatic Sciences, 59(12): 1 874–1 885, https://doi.org/10.1139/f02-153.

    Article  Google Scholar 

  5. Chang P H, Isobe A, Kang K R, Ryoo S B, Kang H S, Kim Y H. 2014. Summer behavior of the Changjiang diluted water to the East/Japan Sea: a modeling study in 2003. Continental Shelf Research, 81: 7–18, https://doi.org/10.1016/j.csr.2014.03.007.

    Article  Google Scholar 

  6. Chen F J, Jia G D, Chen J Y. 2009. Nitrate sources and watershed denitrification inferred from nitrate dual isotopes in the Beijiang River, South China. Biogeochemistry, 94(2): 163–174, https://doi.org/10.1007/s10533-009-9316-x.

    Article  Google Scholar 

  7. Codispoti L A, Christensen J P. 1985. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean. Marine Chemistry, 16(4): 277–300, https://doi.org/10.1016/0304-4203(85)90051-9.

    Article  Google Scholar 

  8. Collos Y, Siddiqi M Y, Wang M Y, Glass A D M, Harrison P J. 1992. Nitrate uptake kinetics by two marine diatoms using the radioactive tracer 13N. Journal of Experimental Marine Biology and Ecology, 163(2): 251–260, https://doi.org/10.1016/0022-0981(92)90053-D.

    Article  Google Scholar 

  9. Dai Z J, Du J Z, Zhang X L, Su N, Li J F. 2011. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) estuary in recent decades (1955–2008). Environmental Science & Technology, 45(1): 223–227, https://doi.org/10.1021/es103026a.

    Article  Google Scholar 

  10. Domangue R J, Mortazavi B. 2018. Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary. Environmental Pollution, 238: 599–606, https://doi.org/10.1016/j.envpol.2018.03.033.

    Article  Google Scholar 

  11. Ebina J, Tsutsui T, Shirai T. 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research, 17(12): 1 721–1 726, https://doi.org/10.1016/0043-1354(83)90192-6.

    Article  Google Scholar 

  12. Edmond J M, Spivack A, Grant B C, Hu M H, Chen Z, Chen S, Zeng X. 1985. Chemical dynamics of the Changjiang Estuary. Continental Shelf Research, 4(1–2): 17–36, https://doi.org/10.1016/0278-4343(85)90019-6.

    Article  Google Scholar 

  13. Eyre B. 1994. Nutrient biogeochemistry in the tropical Moresby River Estuary system North Queensland, Australia. Estuarine, Coastal and Shelf Science, 39(1): 15–31, https://doi.org/10.1006/ecss.1994.1046.

    Article  Google Scholar 

  14. Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger S P, Asner G P, Cleveland C C, Green P A, Holland E A, Karl D M, Michaels A F, Porter J H, Townsend A R, Vöosmarty C J. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2): 153–226, https://doi.org/10.1007/s10533-004-0370-0.

    Article  Google Scholar 

  15. Gao L, Li D J, Zhang Y W. 2012. Nutrients and particulate organic matter discharged by the Changjiang (Yangtze River): seasonal variations and temporal trends. Journal of Geophysical Research-Biogeosciences, 117(G4): G04001, https://doi.org/10.1029/2012JG001952.

    Article  Google Scholar 

  16. Gao X L, Song J M. 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Marine Pollution Bulletin, 50(3): 327–335, https://doi.org/10.1016/j.marpolbul.2004.11.004.

    Article  Google Scholar 

  17. Granger J, Sigman D M, Rohde M M, Maldonado M T, Tortell P D. 2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochimica et Cosmochimica Acta, 74(3): 1 030–1 040, https://doi.org/10.1016/j.gca.2009.10.044.

    Article  Google Scholar 

  18. Hansen H P, Koroleff F. 1999. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M eds. Methods of Seawater Analysis. Wiley, Washington. p.159–228.

    Google Scholar 

  19. Hsiao S S Y, Hsu T C, Liu J W, Xie X, Zhang Y, Lin J, Wang H, Yang J Y T, Hsu S C, Dai M, Kao S J. 2014. Nitrification and its oxygen consumption along the turbid Chang Jiang River plume. Biogeosciences, 11(7): 2 083–2 098, https://doi.org/10.5194/bg-11-2083-2014.

    Article  Google Scholar 

  20. Huang J K, Hu R F, Cao J M, Rozelle S. 2008. Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability. Journal of Soil and Water Conservation, 63(5): 165A–167A, https://doi.org/10.2489/jswc.63.5.165A.

    Article  Google Scholar 

  21. Jiang S, Müller M, Jin J, Wu Y, Zhu K, Zhang G S, Mujahid A, Rixen T, Muhamad M F, Sia E S A, Jang F H A, Zhang J. 2019. Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation. Biogeosciences, 16(14): 2 821–2 836, https://doi.org/10.5194/bg-16-2821-2019.

    Article  Google Scholar 

  22. Justić D, Turner R E, Rabalais N N. 2003. Climatic influences on riverine nitrate flux: implications for coastal marine eutrophication and hypoxia. Estuaries, 26(1): 1–11, https://doi.org/10.1007/BF02691688.

    Article  Google Scholar 

  23. Ketchum B H. 1939. The absorption of phosphate and nitrate by illuminated cultures of Nitzschia closterium. American Journal of Botany, 26(6): 399–407, https://doi.org/10.1002/j.1537-2197.1939.tb09293.x.

    Article  Google Scholar 

  24. Kuypers M M M, Marchant H K, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5): 263–276, https://doi.org/10.1038/nrmicro.2018.9.

    Article  Google Scholar 

  25. Kuypers M M M. 2017. Microbiology: a fight for scraps of ammonia. Nature, 549(7671): 162–163, https://doi.org/10.1038/549162a.

    Article  Google Scholar 

  26. Li S L, Liu C Q, Li J, Liu X L, Chetelat B, Wang B L, Wang F S. 2010. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach. Environmental Science & Technology, 44(5): 1 573–1 578, https://doi.org/10.1021/es902670n.

    Article  Google Scholar 

  27. Li Z, Song S Q, Li C W, Yu Z M. 2018. The sinking of the phytoplankton community and its contribution to seasonal hypoxia in the Changjiang (Yangtze River) estuary and its adjacent waters. Estuarine, Coastal and Shelf Science, 208: 170–179, https://doi.org/10.1016/j.ecss.2018.05.007.

    Article  Google Scholar 

  28. Liu S M, Qi X H, Li X N, Ye H R, Wu Y, Ren J L, Zhang J, Xu W Y. 2016. Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea. Journal of Marine Systems, 154: 15–27, https://doi.org/10.1016/j.jmarsys.2015.05.010.

    Article  Google Scholar 

  29. Liu X J, Yu Z M, Song X X, Cao X H. 2009. The nitrogen isotopic composition of dissolved nitrate in the Yangtze River (Changjiang) estuary, China. Estuarine, Coastal and Shelf Science, 85(4): 641–650, https://doi.org/10.1016/j.ecss.2009.09.017.

    Article  Google Scholar 

  30. Lohrenz S E, Fahnenstiel G L, Redalje D G, Lang G A, Dagg M J, Whitledge T E, Dortch Q. 1999. Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plum. Continental Shelf Research, 19(9): 1 113–1 141, https://doi.org/10.1016/S0278-4343(99)00012-6.

    Article  Google Scholar 

  31. Loken L C, Small G E, Finlay J C, Sterner R W, Stanley E H. 2016. Nitrogen cycling in a freshwater estuary. Biogeochemistry, 127(2–3): 199–216, https://doi.org/10.1007/s10533-015-0175-3.

    Article  Google Scholar 

  32. Manna R K, Satpathy B B, Roshith C M, Naskar M, Bhaumik U, Sharma A P. 2013. Spatio-temporal changes of hydrochemical parameters in the estuarine part of the River Ganges under altered hydrological regime and its impact on biotic communities. Aquatic Ecosystem Health & Management, 16(4): 433–444, https://doi.org/10.1080/14634988.2013.853596.

    Article  Google Scholar 

  33. Martens-Habbena W, Berube P M, Urakawa H, de la Torre J R, Stahl D A. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266): 976–979, https://doi.org/10.1038/nature08465.

    Article  Google Scholar 

  34. Milliman J D, Farnsworth K L. 2011. River Discharge to the Coastal Ocean-A Global Synthesis. Cambridge University Press, London. 319p.

    Google Scholar 

  35. Moore W S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2: 59–88, https://doi.org/10.1146/annurev-marine-120308-081019.

    Article  Google Scholar 

  36. Pennino M J, Kaushal S S, Murthy S N, Blomquist J D, Cornwell J C, Harris L A. 2016. Sources and transformations of anthropogenic nitrogen along an urban river-estuarine continuum. Biogeosciences, 13(22): 6 211–6 228, https://doi.org/10.5194/bg-13-6211-2016.

    Article  Google Scholar 

  37. Sanders T, Schöl A, Dähnke K. 2018. Hot spots of nitrification in the Elbe Estuary and their impact on nitrate regeneration. Estuaries and Coasts, 41(1): 128–138, https://doi.org/10.1007/s12237-017-0264-8.

    Article  Google Scholar 

  38. Santos M L S, Muniz K, Barros-Neto B, Araujo M. 2008. Nutrient and phytoplankton biomass in the Amazon River shelf waters. Anais da Academia Brasileira de Ciências, 80(4): 703–717, https://doi.org/10.1590/S0001-37652008000400011.

    Article  Google Scholar 

  39. Sebilo M, Billen G, Mayer B, Billiou D, Grably M, Garnier J, Mariotti A. 2006. Assessing nitrification and denitrification in the Seine River and estuary using chemical and isotopic techniques. Ecosystems, 9(4): 564–577, https://doi.org/10.1007/s10021-006-0151-9.

    Article  Google Scholar 

  40. Sigman D M, Casciotti K L, Andreani M, Barford C, Galanter M, Böhlke J K. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73(17): 4 145–4 153, https://doi.org/10.1021/ac010088e.

    Article  Google Scholar 

  41. Song G D, Liu S M, Marchant H, Kuypers M M M, Lavik G. 2013. Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment. Biogeosciences, 10(11): 6 851–6 864, https://doi.org/10.5194/bg-10-6851-2013.

    Article  Google Scholar 

  42. Thibodeau B, Hélie J F, Lehmann M F. 2013. Variations of the nitrate isotopic composition in the St. Lawrence River caused by seasonal changes in atmospheric nitrogen inputs. Biogeochemistry, 115: 287–298, https://doi.org/10.1007/s10533-013-9834-4.

    Article  Google Scholar 

  43. Wang W T, Yu Z M, Song X X, Wu Z X, Yuan Y Q, Zhou P, Cao X H. 2016. The effect of Kuroshio Current on nitrate dynamics in the southern East China Sea revealed by nitrate isotopic composition. Journal of Geophysical Research: Oceans, 121(9): 7 073–7 087, https://doi.org/10.1002/2016JC011882.

    Google Scholar 

  44. Wang W T, Yu Z M, Song X X, Wu Z X, Yuan Y Q, Zhou P, Cao X H. 2017. Characteristics of the δ15NNO3 distribution and its drivers in the Changjiang River estuary and adjacent waters. Chinese Journal of Oceanology and Limnology, 35(2): 367–382, https://doi.org/10.1007/s00343-016-5276-x.

    Article  Google Scholar 

  45. Wang W T, Yu Z M, Wu Z X, Song S Q, Song X X, Yuan Y Q, Cao X H. 2018. Rates of nitrification and nitrate assimilation in the Changjiang River estuary and adjacent waters based on the nitrogen isotope dilution method. Continental Shelf Research, 163: 35–43, https://doi.org/10.1016/j.csr.2018.04.014.

    Article  Google Scholar 

  46. Weigand M A, Foriel J, Barnett B, Oleynik S, Sigman D M. 2016. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Communications in Mass Spectrometry, 30(12): 1 365–1 383, https://doi.org/10.1002/rcm.7570.

    Article  Google Scholar 

  47. Wong W W, Grace M R, Cartwright I, Cook P L M. 2014. Sources and fate of nitrate in a groundwater-fed estuary elucidated using stable isotope ratios of nitrogen and oxygen. Limnology and Oceanography, 59(5): 1 493–1 509, https://doi.org/10.4319/lo.2014.59.5.1493.

    Article  Google Scholar 

  48. Wu H, Zhu J R, Choi B H. 2010. Links between saltwater intrusion and subtidal circulation in the Changjiang Estuary: a model-guided study. Continental Shelf Research, 30(17): 1 891–1 905, https://doi.org/10.1016/j.csr.2010.09.001.

    Article  Google Scholar 

  49. Xue D M, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P. 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 43(5): 1 159–1 170, https://doi.org/10.1016/j.watres.2008.12.048.

    Article  Google Scholar 

  50. Yan X L, Xu M N, Wan X S, Yang J Y T, Trull T W, Dai M H, Kao S J. 2017. Dual isotope measurements reveal zoning of nitrate processing in the summer Changjiang (Yangtze) river plume. Geophysical Research Letters, 44(24): 12 289–12 297, https://doi.org/10.1002/2017GL075951.

    Article  Google Scholar 

  51. Yang H J, Shen Z M, Zhang J P, Wang W H. 2007. Water quality characteristics along the course of the Huangpu River (China). Journal of Environmental Sciences, 19(10): 1 193–1 198, https://doi.org/10.1016/S1001-0742(07)60195-8.

    Article  Google Scholar 

  52. Yang Y P, Zhang M J, Li Y T, Zhang W. 2015. The variations of suspended sediment concentration in Yangtze River Estuary. Journal of Hydrodynamics, 27(6): 845–856, https://doi.org/10.1016/s1001-6058(15)60547-9.

    Article  Google Scholar 

  53. Yao Q Z, Yu Z G, Li L L, Chen HT, Mi T Z. 2014. Transformation and source of nutrients in the Changjiang Estuary. Science China Chemistry, 57(5): 779–790, https://doi.org/10.1007/s11426-013-5040-4.

    Article  Google Scholar 

  54. Yu H Y, Yu Z M, Song X X, Cao X H, Yuan Y Q, Lu G Y. 2015. Seasonal variations in the nitrogen isotopic composition of dissolved nitrate in the Changjiang River estuary, China. Estuarine, Coastal and Shelf Science, 155: 148–155, https://doi.org/10.1016/j.ecss.2015.01.017.

    Article  Google Scholar 

  55. Zhang A Y, Zhang J, Hu J, Zhang R F, Zhang G S. 2015. Silicon isotopic chemistry in the Changjiang Estuary and coastal regions: impacts of physical and biogeochemical processes on the transport of riverine dissolved silica. Journal of Geophysical Research-Oceans, 120(10): 6 943–6 957, https://doi.org/10.1002/2015JC011050.

    Article  Google Scholar 

  56. Zhang A. 2007. Study on the Controlling of Nutrient Phase Transformation by Adsorption-Desorption in the Chanjiang Estuary. East China Normal University, Shanghai, China. 168p.

    Google Scholar 

  57. Zhang J, Wu Y, Jennerjahn T C, Ittekkot V, He Q. 2007. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics. Marine Chemistry, 106(1–2): 111–126, https://doi.org/10.1016/j.marchem.2007.02.003.

    Article  Google Scholar 

  58. Zhang J. 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16(8): 1 023–1 045, https://doi.org/10.1016/0278-4343(95)00055-0.

    Article  Google Scholar 

  59. Zhu J R, Chen C S, Ding P X, Li C Y, Lin H C. 2004. Does the Taiwan warm current exist in winter? Geophysical Research Letters, 31(12): L12302, https://doi.org/10.1029/2004gl019997.

    Article  Google Scholar 

  60. Zhu X C, Zhang R F, Wu Y, Zhu J R, Bao D Y, Zhang J. 2018. The remobilization and removal of Fe in Estuary-a case study in the Changjiang Estuary, China. Journal of Geophysical Research-Oceans, 123(4): 2 539–2 553, https://doi.org/10.1002/2017JC013671.

    Article  Google Scholar 

Download references

Acknowledgment

Technical support by Prof. GAO Yonghui, Prof. LI Bo, Ms. ZHENG Wei, Dr. ZHU Xunchi, Ms. QI Lijun, Mr. LIU Zhengbo, Ms. CAO Wanwan, Ms. JIANG Shuo, Mr. ZHU Kun, Mr. DAI Jinlong, and the R/V Zheyuke II crew during the cruise are acknowledged. The authors also appreciate the great assistance from Prof. YU Zhiming at the Institute of Oceanology, Chinese Academy of Sciences for the assistance in stable isotope analyses. Thanks are also due to the editor and anonymous reviewers, whose comments helped to improve the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shan Jiang.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41530960, 41706081) and the Scientific Research Foundation of SKLEC (No. 2017RCDW04)

Data Availability Statement

The data used in the present study are available from the corresponding author upon request.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Jin, J., Zhang, G. et al. Nitrate in the Changjiang diluted water: an isotopic evaluation on sources and reaction pathways. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0149-8

Download citation

Keyword

  • Changjiang diluted water (CDW)
  • denitrification and nitrification
  • estuary
  • production and removal
  • stable isotope