Using statolith shape analysis to identify five commercial Loliginidae squid species in Chinese waters

Abstract

Identification of squids in the family Loliginidae is a time-consuming exercise because of the highly overlapping distributions of species and their overall similarity (fin shape and size, sucker ring dentition, and color). Identifying squid based on statolith morphology is considered more accurate than identifying species based on beaks or gladius morphology. We report and compare the statolith shape of five commercially Loliginidae squid (Uroteuthis (Photololigo) duvaucelii, U. edulis, U. chinensis, Loliolus beka, L. japonica) to determine how well these structures discriminate species. Based on statolith morphology, variation in the lateral and dorsal domes enables an 84.8% success rate at classifying species. Environmental factors correlate with statolith shape, and for vertically migrating squid, statolith relative size decreases with increased depth of habitation. Statolith morphology can be used to effectively and accurately identify species of Loliginidae squid occurring in Chinese waters, and may prove valuable for identifying and managing squid resources.

This is a preview of subscription content, access via your institution.

References

  1. Anderson C I H, Rodhouse P G. 2001. Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fisheries Research, 54(1): 133–143, https://doi.org/10.1016/S0165-7836(01)00378-2.

    Article  Google Scholar 

  2. Arkhipkin A I, Bizikov V A. 2000. Role of the statolith in functioning of the acceleration receptor system in squids and sepioids. Journal of Zoology, 250(1): 31–55, https://doi.org/10.1111/j.1469-7998.2000.tb00575.x.

    Article  Google Scholar 

  3. Arkhipkin A I, Rodhouse P G K, Pierce G J, Sauer W, Sakai M, Allcock L, Arguelles J, Bower J R, Castillo G, Ceriola L, Chen C S, Chen X J, Diaz-Santana M, Downey N, González A F, Amores J G, Green C P, Guerra A, Hendrickson L C, Ibáñez C, Ito K, Jereb P, Kato Y, Katugin O N, Kawano M, Kidokoro H, Kulik V V, Laptikhovsky V V, Lipinski M R, Liu B L, Mariátegui L, Marin W, Medina A, Miki K, Miyahara K, Moltschaniwskyj N, Moustahfid H, Nabhitabhata J, Nanjo N, Nigmatullin C M, Ohtani T, Pecl G, Perez J A A, Piatkowski U, Saikliang P, Salinas-Zavala C A, Steer M, Tian Y J, Ueta Y, Vijai D, Wakabayashi T, Yamaguchi T, Yamashiro C, Yamashita N, Zeidberg L D. 2015. World squid fisheries. Reviews in Fisheries Science & Aquaculture, 23(2): 92–252, https://doi.org/10.1080/23308249.2015.1026226.

    Article  Google Scholar 

  4. Arkhipkin A I. 2003. Towards identification of the ecological lifestyle in nektonic squid using statolith morphometry. Journal of Molluscan Studies, 69(3): 171–178, https://doi.org/10.1093/mollus/69.3.171.

    Article  Google Scholar 

  5. Arkhipkin A I. 2005. Statoliths as ‘black boxes’ (life recorders) in squid. Marine and Freshwater Research, 56(5): 573–583, https://doi.org/10.1071/MF04158.

    Article  Google Scholar 

  6. Belkin I M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography, 81(1–4): 207–213, https://doi.org/10.1016/j.pocean.2009.04.011.

    Article  Google Scholar 

  7. Borges T C. 1995. Discriminate analysis of geographic variation in hard structures of Todarodes saguttatus (Lamarek 1798) from North Atlantic Ocean. ICESMarine Science Symposium, (199): 433–440.

  8. Breiman L. 2001. Random forests. Machine Learning, 45: 5–32, https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  9. Cadrin S X, Kerr L A, Mariani S. 2014. Stock Identification Methods: Applications in Fishery Science. 2nd edn. Academic Press, London. p.1–10.

    Google Scholar 

  10. Cadrin S X, Silva V M. 2005. Morphometric variation of yellowtail flounder. ICES Journal of Marine Science, 62(4): 683–694, https://doi.org/10.1016/j.icesjms.2005.02.006.

    Article  Google Scholar 

  11. Chapela M J, Sotelo C G, Pérez-Martín R I. 2003. Molecular identification of cephalopod species by FINS and PCR-RFLP of a cytochrome b gene fragment. European Food Research and Technology, 217(6): 524–529, https://doi.org/10.1007/s00217-003-0788-y.

    Article  Google Scholar 

  12. Chen X J, Wang G Y, Qian W G. 2013. Important Economic Resources and Fisheries of Cephalopod in Coast of China. Science Press, Beijing, China. p.67, 101–120. (in Chinese)

    Google Scholar 

  13. Clarke M R. 1978. The cephalopod statolithan-introduction to its form. Journal of the Marine Biological Association of the United Kingdom, 58(3): 701–712, https://doi.org/10.1017/S0025315400041345.

    Article  Google Scholar 

  14. Crandall K A, Bininda-Emonds O R P, Mace G M, Wayne R K. 2000. Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution, 15(7): 290–295, https://doi.org/10.1016/S0169-5347(00)01876-0.

    Article  Google Scholar 

  15. de la Chesnais T, Fulton E A, Tracey S R, Pecl G T. 2019. The ecological role of cephalopods and their representation in ecosystem models. Reviews in Fish Biology and Fisheries, 29(2): 313–334, https://doi.org/10.1007/s11160-019-09554-2.

    Article  Google Scholar 

  16. Diaz-Santana-Iturrios M, Salinas-Zavala C A, Granados-Amores J, de la Cruz-Agüero J, Garcia-Rodriguez F J. 2019. Taxonomic considerations of squids of the family Loliginidae (Cephalopoda: Myopsida) supported by morphological, morphometric, and molecular data. Marine Biodiversity, 49(5): 2 401–2 409, https://doi.org/10.1007/s12526-019-00979-3.

    Article  Google Scholar 

  17. Dommergues J L, Neige P, Boletzky S V. 2000. Exploration of morphospace using procrustes analysis in statoliths of cuttlefish and squid (Cephalopoda: Decabrachia)—evolutionary aspects of form disparity. The Veliger, 43(3): 265–276.

    Google Scholar 

  18. Dong Z Z. 1988. Fauna Sinica, Phylum Mollusca, Class Cephalopoda. Science Press, Beijing, China. p.111–114. (in Chinese)

    Google Scholar 

  19. Dong Z Z. 1993. Morphological comparison of the several structures of cephalopods. Acta Zoologica Sinica, 39(4): 348–354. (in Chinese with English abstract)

    Google Scholar 

  20. Du T F. 2016. Resources Assessment for Cephalopod in Offshore Water of China and Classification of Genus Level of Squids. Shanghai Ocean University, Shanghai, China. p.47. (in Chinese with English abstract)

    Google Scholar 

  21. Fang Z, Liu B L, Li J H, Su H, Chen X J. 2014. Stock identification of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean on the basis of beak and statolith morphology. Scientia Marina, 78(2): 239–248, https://doi.org/10.3989/scimar.03991.06A.

    Article  Google Scholar 

  22. Goud J, De Heij A. 2012. Mediterranean Sepiola aurantiaca Jatta, 1896, versus the NE Atlantic Sepiola pfefferi Grimpe, 1921 (Cephalopoda, Sepiolinae). Basteria, 76(1–3): 1–11.

    Google Scholar 

  23. Green C P, Robertson S G, Hamer P A, Virtue P, Jackson G D, Moltschaniwskyj N A. 2015. Combining statolith element composition and Fourier shape data allows discrimination of spatial and temporal stock structure of arrow squid (Nototodarus gouldi). Canadian Journal of Fisheries and Aquatic Sciences, 72(11): 1 609–1 618, https://doi.org/10.1139/cjfas-2014-0559.

    Article  Google Scholar 

  24. Hanlon R T, Messenger J B. 1996. Cephalopod Behaviour. Cambridge University Press, Cambridge, England. 232p.

    Google Scholar 

  25. Ho S C. 2005. Taxonomic Study of the Taiwan Inshore Squids. Taiwan Ocean University, Keelung, China. 93p. (in Chinese with English abstract)

    Google Scholar 

  26. Hu F F, Chen X J, Liu B L, Li J H. 2017. Review on identification of cephalopods classification. Marine Fisheries, 39(1): 110–120. (in Chinese with English abstract)

    Google Scholar 

  27. Jereb P, Roper C F E. 2006. Cephalopods of the Indian Ocean. A review. Part I. Inshore squids (Loliginidae) collected during the international Indian Ocean Expedition. Proceedings of the Biological Society of Washington, 119(1): 91–136, https://doi.org/10.2988/0006-324x(2006)119[91:cotioa]2.0.co;2.

    Article  Google Scholar 

  28. Jereb P, Roper C F E. 2010. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid squids. In: FAO Species Catalogue for Fishery Purposes. Rome, FAO. p. 38–117.

    Google Scholar 

  29. Jiang L H, Kang L S, Wu C W, Chen M, Lü Z M. 2018. A comprehensive description and evolutionary analysis of 9 Loliginidae mitochondrial genomes. Hydrobiologia, 808(1): 115–124, https://doi.org/10.1007/s10750-017-3377-y.

    Article  Google Scholar 

  30. Jin Y, Liu B L, Chen X J, Staples K. 2018. Morphological beak differences of loliginid squid, Uroteuthis chinensis and Uroteuthis edulis, in the northern South China Sea. Journal of Oceanology and Limnology, 36(2): 559–571, https://doi.org/10.1007/s00343-017-6285-0.

    Article  Google Scholar 

  31. Jin Y, Liu B L, Li J H, Chen X J. 2017. Identification of three common Loliginidae squid species in the South China Sea by analyzing hard tissues with geometric outline method. Journal of Ocean University of China, 16(5): 840–846, https://doi.org/10.1007/s11802-017-3218-7.

    Article  Google Scholar 

  32. Libungan L A, Pâlsson S. 2015. ShapeR: an R package to study otolith shape variation among fish populations. PLoS One, 10(3): e0121102, https://doi.org/10.1371/journal.pone.0121102.

    Article  Google Scholar 

  33. Lombarte A, Cruz A. 2007. Otolith size trends in marine fish communities from different depth strata. Journal of Fish Biology, 71(1): 53–76, https://doi.org/10.1111/j.1095-8649.2007.01465.x.

    Article  Google Scholar 

  34. Lombarte A, Rufino M M, Sanchez P. 2006. Statolith identification of Mediterranean Octopodidae, Sepiidae, Loliginidae, Ommastrephidae and Enoploteuthidae based on warp analyses. Journal of the Marine Biological Association of the United Kingdom, 86(4): 767–771, https://doi.org/10.1017/S0025315406013683.

    Article  Google Scholar 

  35. Lombarte A, Sanchez P, Morales-Nin B. 1997. Intraspecific shape variability in statoliths of three cephalopod species. Vie et Milieu-Life and Environment, 47(2): 165–169.

    Google Scholar 

  36. Moustahfid H. 2002. Age and growth of arrow squid Todarodes sagittatus (Cephalopoda: Ommastrephidae) sampled in summer in Atlantic Moroccan waters. Bulletin of Marine Science, 71(1): 535–543.

    Google Scholar 

  37. Natsukari Y, Nakanose T, Oda K. 1988. Age and growth of loliginid squid Photololigo edulis (Hoyle, 1885). Journal of Experimental Marine Biology and Ecology, 116(2): 177–190, https://doi.org/10.1016/0022-0981(88)90054-8.

    Article  Google Scholar 

  38. Okutani T. 2015. Cuttlefishes and Squids of the World (New Edition). Tokai University Press, Tokyo, Japan. p.73–227. (in Japanese)

    Google Scholar 

  39. Pang Y M, Tian Y J, Fu C H, Wang B, Li J C, Ren Y P, Wan R. 2018. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fisheries Research, 208: 22–33, https://doi.org/10.1016/j.fishres.2018.07.004.

    Article  Google Scholar 

  40. Parisi-Baradad V, Manjabacas A, Lombarte A, Olivella R, Chic O, Piera J, Garcia-Ladona E. 2010. Automated Taxon Identification of Teleost fishes using an otolith online database—AFORO. Fisheries Research, 105(1): 13–20, https://doi.org/10.1016/j.fishres.2010.02.005.

    Article  Google Scholar 

  41. Pecl G T, Jackson G D. 2008. The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Reviews in Fish Biology and Fisheries, 18(4): 373–385, https://doi.org/10.1007/s11160-007-9077-3.

    Article  Google Scholar 

  42. Pecl G T, Moltschaniwskyj N A, Tracey S R, Jordan A R. 2004. Inter-annual plasticity of squid life history and population structure: ecological and management implications. Oecologia, 139(4): 515–524, https://doi.org/10.1007/s00442-004-1537-z.

    Article  Google Scholar 

  43. Pérez-del-Olmo A, Montero F E, Fernández M, Barrett J, Raga J A, Kostadinova A. 2010. Discrimination of fish populations using parasites: random forests on a ‘predictable’ host-parasite system. Parasitology, 137(12): 1833–1847, https://doi.org/10.1017/S0031182010000739.

    Article  Google Scholar 

  44. Reig-Bolaño R, Marti-Puig P, Lombarte A, Soria J A, Parisi-Baradad V. 2010. A new otolith image contour descriptor based on partial reflection. Environmental Biology of Fishes, 89(3–4): 579–590, https://doi.org/10.1007/s10641-010-9700-3.

    Article  Google Scholar 

  45. Ren Y, Hou R, Feng H, Wang L, Feng C L. 2015. DNA analysis methods in species identification. Shaanxi Journal of Agricultural Sciences, 61(10): 61–64. (in Chinese)

    Google Scholar 

  46. Sin Y W, Yau C, Chu K H. 2009. Morphological and genetic differentiation of two loliginid squids, Uroteuthis (Photololigo) chinensis and Uroteuthis (Photololigo) edulis (Cephalopoda: Loliginidae), in Asia. Journal of Experimental Marine Biology and Ecology, 369(1): 22–30, https://doi.org/10.1016/j.jembe.2008.10.029.

    Article  Google Scholar 

  47. Smith P J, Robertson S G, Horn P L, Bull B, Anderson O F, Stanton B R, Oke C S. 2002. Multiple techniques for determining stock relationships between orange roughy, Hoplostethus atlanticus, fisheries in the eastern Tasman Sea. Fisheries Research, 58(2): 119–140, https://doi.org/10.1016/s0165-7836(01)00389-7.

    Article  Google Scholar 

  48. Strobl C, Malley J, Tutz G. 2009. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4): 323–348, https://doi.org/10.1037/a0016973.

    Article  Google Scholar 

  49. Vignon M, Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series, 411: 231–241, https://doi.org/10.3354/meps08651.

    Article  Google Scholar 

  50. Yang L L, Jiang Y Z, Liu Z L, Lin N, Li S F, Cheng J H. 2012. Analysis of beak morphology of Loligo beka in the East China Sea. Journal of Fishery Sciences of China, 19(4): 586–593, https://doi.org/10.3724/SPJ.1118.2012.00586. (in Chinese with English abstract)

    Article  Google Scholar 

  51. Zhang C, Ye Z J, Li Z G, Wan R, Ren Y P, Dou S Z. 2016. Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea: evidence from random forests based on otolith features. Fisheries Science, 82(2): 251–256, https://doi.org/10.1007/s12562-016-0968-x.

    Article  Google Scholar 

  52. Zhao B, Liu J H, Song J J, Cao L, Dou S Z. 2017. Evaluation of removal of the size effect using data scaling and elliptic Fourier descriptors in otolith shape analysis, exemplified by the discrimination of two yellow croaker stocks along the Chinese coast. Chinese Journal of Oceanology and Limnology, 35(6): 1482–1492, https://doi.org/10.1007/s00343-017-6012-x.

    Article  Google Scholar 

Download references

Acknowledgment

We thank CHEN Yanyu (Beijing Normal University-Hong Kong Baptist University United International College) and WANG Haozhan (Sansha Marine Environment Monitoring Center Station, State Oceanic Administration) for their great assistance in sample collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongjun Tian.

Additional information

Supported by the National Natural Science Foundation of China (NSFC) (Nos. 41930534, 41861134037) and the National Key Technology R&D Program of China (Nos. 2018YFD0900902, 2018YFD0900903)

6 Data Availability Statement

The data generated or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Liu, D., Zhang, C. et al. Using statolith shape analysis to identify five commercial Loliginidae squid species in Chinese waters. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0139-x

Download citation

Keyword

  • statolith shape analysis
  • Loliginidae squid
  • fishery management
  • Chinese waters