Skip to main content
Log in

Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Microplastics pollution and seawater temperature rise have been the major environmental issues, threatening the survival and biodiversity of marine organisms. This study evaluated the combined effect of temperature and polystyrene microplastics (MP) on Artemia, a filter-feeding crustacean that is widely used for environmental toxicology studies. Brine shrimp Artemia franciscana were exposed to three MP concentrations (0, 0.2, and 2.0 mg/L) and three temperatures (22, 26, and 30 °C) for 14 d. In general, higher MP concentration and temperature led to a decreased survival rate and growth. Two-way ANOVA analysis indicated that the survival rate of Artemia was significantly impacted by both MP concentration and temperature (P<0.05), but there was no significant interaction between two factors (P>0.05). Growth of Artemia was significantly impacted by temperature (P<0.05), and with a significant interaction between two factors (P<0.05). Furthermore, the enzymatic activity, intestinal histological analyses, and immune gene expression were determined for Artemia reared at 30 °C with three MP concentrations (0, 0.2, and 2.0 mg/L). The results showed that 2.0 mg/L MP resulted in reduced Artemia intestinal microvilli and exfoliated epithelia cells, significantly increased acid phosphatase (ACP) activity (P<0.05) and immune-related gene ADRA1B and CREB3 expression, revealing that higher MP concentration could induce oxidative and immunological stress on Artemia at 30 °C. Overall, our study suggests that MP and temperature have combined adverse effect on Artemia, especially at relatively high temperature and polystyrene MP concentration. These findings are important to understand the potential ecological risks posed by these two factors on the organisms in marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The research data used in this study can be shared upon request.

References

  • Andrady A L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1 596–1 605, https://doi.org/10.1016/j.marpolbul.2011.05.030.

    Google Scholar 

  • Bagnyukova T V, Vasylkiv O Y, Storey K B, Lushchak V I. 2005. Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Research, 1052(2): 180–186, https://doi.org/10.1016/j.brainres.2005.06.002.

    Google Scholar 

  • Bakir A, O’Connor I A, Rowland S J, Hendriks A J, Thompson R C. 2016. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environmental Pollution, 219: 56–65, https://doi.org/10.1016/j.envpol.2016.09.046.

    Google Scholar 

  • Barber B J, Blake N J. 2006. Reproductive physiology. In: Shumway S E, Parsons G J eds. Scallops: Biology, Ecology and Aquaculture. Elsevier, Amsterdam. 59pp, https://doi.org/10.1016/S0167-9309(06)80033-5.

    Google Scholar 

  • Barboza L G A, Vieira L R, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L. 2018a. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquatic Toxicology, 195: 49–57, https://doi.org/10.1016/j.aquatox.2017.12.008.

    Google Scholar 

  • Barboza L G A, Vieira L R, Guilhermino L. 2018b. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): changes in behavioural responses and reduction of swimming velocity and resistance time. Environmental Pollution, 236: 1 014–1 019, https://doi.org/10.1016/j.envpol.2017.12.082.

    Google Scholar 

  • Batel A, Linti F, Scherer M, Erdinger L, Braunbeck T. 2016. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 35(7): 1 656–1 666, https://doi.org/10.1002/etc.3361.

    Google Scholar 

  • Bergami E, Pugnalini S, Vannuccini M L, Manfra L, Faleri C, Savorelli F, Dawson K A, Corsi I. 2017. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquatic Toxicology, 189: 159–169, https://doi.org/10.1016/j.aquatox.2017.06.008.

    Google Scholar 

  • Besseling E, Wang B, Lürling M, Koelmans A A. 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48(20): 12 336–12 343, https://doi.org/10.1021/es503001d.

    Google Scholar 

  • Bhuvaneshwari M, Thiagarajan V, Nemade P, Chandrasekaran N, Mukherjee A. 2018. Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina effect of dietary and waterborne exposure. Environmental Research, 160: 39–46, https://doi.org/10.1016/j.envres.2017.09.022.

    Google Scholar 

  • Brierley A S, Kingsford M J. 2009. Impacts of climate change on marine organisms and ecosystems. Current Biology, 19(14): R602–R614, https://doi.org/10.1016/j.cub.2009.05.046.

    Google Scholar 

  • Browne M A, Dissanayake A, Galloway T S, Lowe D M, Thompson R C. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13): 5 026–5 031, https://doi.org/10.1021/es800249a.

    Google Scholar 

  • Browne R A, Wanigasekera G. 2000. Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. Journal of Experimental Marine Biology and Ecology, 244(1): 29–44, https://doi.org/10.1016/S0022-0981(99)00125-2.

    Google Scholar 

  • Chen W H, Ge X M, Wang W W, Yu J, Hu S N. 2009. A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics, 10: 52, https://doi.org/10.1186/1471-2164-10-52.

    Google Scholar 

  • Cole M, Lindeque P K, Fileman E, Clark J, Lewis C, Halsband C, Galloway T S. 2016. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environmental Science & Technology, 50(6): 3 239–3 246, https://doi.org/10.1021/acs.est.5b05905.

    Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Galloway T S. 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology, 49(2): 1 130–1 137, https://doi.org/10.1021/es504525u.

    Google Scholar 

  • Crain C M, Kroeker K, Halpern B S. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11(12): 1 304–1 315, https://doi.org/10.1111/j.1461-0248.2008.01253.x.

    Google Scholar 

  • Ekonomou G, Lolas A, Castritsi-Catharios J, Neofitou C, Zouganelis G D, Tsiropoulos N, Exadactylos A. 2019. Mortality and effect on growth of Artemia franciscana exposed to two common organic pollutants. Water, 11(8): 1614, https://doi.org/10.3390/w11081614.

    Google Scholar 

  • Eriksen M, Lebreton L C M, Carson H S, Thiel M, Moore C J, Borerro J C, Galgani F, Ryan P G, Reisser J. 2014. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at Sea. PLoS One, 9(12): e111913, https://doi.org/10.1371/journal.pone.0111913.

    Google Scholar 

  • Gunasekara R A Y S A, Rekecki A, Cornillie P, Cornelissen M, Sorgeloos P, Simoens P, Bossier P, Van den Broeck W. 2011. Morphological characteristics of the digestive tract of gnotobiotic Artemia franciscana nauplii. Aquaculture, 321(1–2): 1–7, https://doi.org/10.1016/j.aquaculture.2011.07.037.

    Google Scholar 

  • Hou L, Wang Y, Zou X Y. 2000. Expression characterizations of alkaline phosphatase (ALP) and acid phosphatase (ACP) isozymic genes of bisexual Artemia populations from China. Donghai Marine Science, 18(4): 22–28. (in Chinese)

    Google Scholar 

  • Ighodaro O M, Akinloye O A. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4): 287–293, https://doi.org/10.1016/j.ajme.2017.09.001.

    Google Scholar 

  • Irwin S, Wall V, Davenport J. 2007. Measurement of temperature and salinity effects on oxygen consumption of Artemia franciscana K., measured using fibre-optic oxygen microsensors. Hydrobiologia, 575: 109–115, https://doi.org/10.1007/s10750-006-0358-y.

    Google Scholar 

  • Jabeen K, Su L, Li J N, Yang D Q, Tong C F, Mu J L, Shi H H. 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221: 141–149, https://doi.org/10.1016/j.envpol.2016.11.055.

    Google Scholar 

  • Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771, https://doi.org/10.1126/science.1260352.

    Google Scholar 

  • Jemec A, Horvat P, Kunej U, Bele M, Kržan A. 2016. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution, 219: 201–209, https://doi.org/10.1016/j.envpol.2016.10.037.

    Google Scholar 

  • Jeong C B, Won E J, Kang H M, Lee M C, Hwang D S, Hwang U K, Zhou B S, Souissi S, Lee S J, Lee J S. 2016. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont rotifer (Brachionus koreanus). Environmental Science & Technology, 50(16): 8 849–8 857, https://doi.org/10.1021/acs.est.6b01441.

    Google Scholar 

  • Kiss T. 2010. Apoptosis and its functional significance in molluscs. Apoptosis, 15(3): 313–321, https://doi.org/10.1007/s10495-009-0446-3.

    Google Scholar 

  • Lavens P, Sorgeloos P. 1996. Manual on the Production and Use of Live Food for Aquaculture. FAO, Rome, 172p.

    Google Scholar 

  • Lee K W, Shim W J, Kwon O Y, Kang J H. 2013. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental Science & Technology, 47(19): 11 278–11 283, https://doi.org/10.1021/es401932b.

    Google Scholar 

  • Li J N, Green C, Reynolds A, Shi H H, Rotchell J M. 2018. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environmental Pollution, 241: 35–44, https://doi.org/10.1016/j.envpol.2018.05.038.

    Google Scholar 

  • Lusher A. 2015. Microplastics in the marine environment: distribution, interactions and effects. In: Bergmann M, Gutow L, Klages M eds. Marine Anthropogenic Litter. Springer, Cham. p.245–307, https://doi.org/10.1007/978-3-319-16510-3_10.

    Google Scholar 

  • Manfra L, Savorelli F, Di Lorenzo B, Libralato G, Comin S, Conti D, Floris B, Francese M, Gallo M L, Gartner I, Guida M, Leoni T, Marino G, Martelli F, Palazzi D, Prato E, Righini P, Rossi E, Volpi G A, Migliore L. 2015. Intercalibration of ecotoxicity testing protocols with Artemia franciscana. Ecological Indicators, 57: 41–47, https://doi.org/10.1016/j.ecolind.2015.04.021.

    Google Scholar 

  • Martins A, Guilhermino L. 2018. Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus. Science of the Total Environment, 631–632: 421–428, https://doi.org/10.1016/j.scitotenv.2018.03.054.

    Google Scholar 

  • Minetto D, Libralato G, Marcomini A, Volpi Ghirardini A. 2017. Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana. Science of the Total Environment, 579: 1 379–1 386, https://doi.org/10.1016/j.scitotenv.2016.11.135.

    Google Scholar 

  • Pampanin D M, Loriano B, Carotenuto L, Marin M G. 2002. Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(3): 605–614, https://doi.org/10.1016/S1095-6433(01)00512-8.

    Google Scholar 

  • Peixoto D, Amorim J, Pinheiro C, Oliva-Teles L, Varó I, Rocha R D M, Vieira M N. 2019. Uptake and effects of different concentrations of spherical polymer microparticles on Artemia franciscana. Ecotoxicology and Environmental Safety, 176: 211–218, https://doi.org/10.1016/j.ecoenv.2019.03.100.

    Google Scholar 

  • Ping C C, Hang K K, Yan J D. 2011. CREB3 subfamily transcription factors are not created equal: recent insights from global analyses and animal models. Cell & Bioscience, 1(1): 6, https://doi.org/10.1186/2045-3701-1-6.

    Google Scholar 

  • Place S P, O’Donnell M J, Hofmann G E. 2008. Gene expression in the intertidal mussel Mytilus californianus: physiological response to environmental factors on a biogeographic scale. Marine Ecology Progress Series, 356: 1–14, https://doi.org/10.3354/meps07354.

    Google Scholar 

  • PlasticsEurope. 2017. An analysis of European plastics production, demand and waste data. Plastics Europe Association of Plastics Manufacturers, Brussels, Belgium. 44p, https://www.plasticseurope.org/application/files/1715/2111/1527/Plastics_the_facts_2017_FINAL_for_website.pdf.

  • Rajalakshmi S, Mohandas A. 2005. Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotoxicology and Environmental Safety, 62(1): 140–143, https://doi.org/10.1016/j.ecoenv.2005.01.003.

    Google Scholar 

  • Rodd A L, Creighton M A, Vaslet C A, Rangel-Mendez J R, Hurt R H, Kane A B. 2014. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. Environmental Science & Technology, 48(11): 6 419–6 427, https://doi.org/10.1021/es500892m.

    Google Scholar 

  • Rotini A, Gallo A, Parlapiano I, Berducci M T, Boni R, Tosti E, Prato E, Maggi C, Cicero A M, Migliore L, Manfra L. 2018. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Ecotoxicology and Environmental Safety, 147: 852–860, https://doi.org/10.1016/j.ecoenv.2017.09.053.

    Google Scholar 

  • Sarkheil M, Johari S A, An H J, Asghari S, Park H S, Sohn E K, Yu I J. 2018. Acute toxicity, uptake, and elimination of zinc oxide nanoparticles (ZnO NPs) using saltwater microcrustacean, Artemia franciscana. Environmental Toxicology and Pharmacology, 57: 181–188, https://doi.org/10.1016/j.etap.2017.12.018.

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity and Scientific and Technical Advisory Panel GEF. 2012. Impacts of Marine Debris on Biodiversity: current status and potential solutions. Convention on Biological Diversity, Montreal. 61p.

  • Shen J H, Zhou S F, Dong Y L, Cui Y L. 2007. Analysis on the status of surface temperature structure of the East China Sea and partial Yellow Sea in 2006. Marine Fisheries (in Chinese), 29(2): 179–185.

    Google Scholar 

  • Tressel S L, Koukos G, Tchernychev B, Jacques S L, Covic L, Kuliopulos A. 2011. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. In: Langel Ü ed. Cell-Penetrating Peptides: Methods and Protocols. Humana Press, New York. p.259–275, https://doi.org/10.1007/978-1-60761-919-2_19.

    Google Scholar 

  • Vannuccini M L, Grassi G, Leaver M J, Corsi I. 2015. Combination effects of nano-TiO2 and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 176–177: 71–78, https://doi.org/10.1016/j.cbpc.2015.07.009.

    Google Scholar 

  • Varó I, Perini A, Torreblanca A, Garcia Y, Bergami E, Vannuccini M L, Corsi I. 2019. Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Science of the Total Environment, 675: 570–580, https://doi.org/10.1016/j.scitotenv.2019.04.157.

    Google Scholar 

  • Wang J D, Tan Z, Peng J P, Qiu Q X, Li M M. 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research, 113: 7–17, https://doi.org/10.1016/j.marenvres.2015.10.014.

    Google Scholar 

  • Wang Y, Zhang D, Zhang M X, Mu J L, Ding G H, Mao Z, Cao Y F, Jin F, Cong Y, Wang L J, Zhang W W, Wang J Y. 2019. Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica. Environmental Pollution, 244: 715–722, https://doi.org/10.1016/j.envpol.2018.10.024.

    Google Scholar 

  • Wright S L, Thompson R C, Galloway T S. 2013. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178: 483–492, https://doi.org/10.1016/j.envpol.2013.02.031.

    Google Scholar 

  • Zhang Y L, Wang D, Zhang Z, Wang Z P, Zhang D C, Yin H. 2018. Transcriptome analysis of Artemia sinica in response to Micrococcus lysodeikticus infection. Fish & Shellfish Immunology, 81: 92–98, https://doi.org/10.1016/j.fsi.2018.06.033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Sui.

Ethics declarations

Conflict of Interest The authors confirm that this article content has no conflict of interest.

Ethics Statement The study protocol was approved by the Committee on the Ethics of Animal Experiments of Tianjin University of Science and Technology.

Additional information

Supported by the Science and Technology Project of Tianjin Municipal (No. 17ZXZYNC00060), the Yangtze Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_17R81), the National Science Foundation of Tianjin (No. 18JCQNJC78500), and the Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry (Tianjin University of Science & Technology), China (No. 201704)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zheng, Y., Dai, C. et al. Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana. J. Ocean. Limnol. 39, 979–988 (2021). https://doi.org/10.1007/s00343-020-0118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0118-2

Keyword

Navigation