Efficiency of phosphorus accumulation by plankton, periphyton developed on submerged artificial substrata and metaphyton: in-situ observation in two shallow ponds

Abstract

Phosphorus overenrichment of shallow ponds prevailing in wetlands leads to their eutrophication causing the collapse of those vulnerable habitats. The potential of phosphorus accumulation by periphyton developed on artificial substrata has been investigated in two shallow ponds (Baračka and Široki Rit) in northwest Serbia and compared to the same ability of plankton and metaphyton. The periphyton substrate carrier has been submerged from May to October. Both continuously (CS) and monthly developed (MS) periphyton were sampled. Autotrophic component of all investigated communities has been qualitatively assessed. Maximum accumulation of only 14.7 mg TP/m2 was recorded in three-month exposed periphyton CS. MS exposed from July to August reached maximal 12.7 mg TP/m2. Plankton community that was characterized by more diverse and abundantly developed algal component was more effective in phosphorus accumulation (0.7 mg/g dry weight) in comparison with dominantly inorganic and diatom-dominated periphyton in Baračka. Unstable conditions caused by recent revitalization (dredging organic matter and mud from pond basin—redigging) as well as rapid desiccation of Široki Rit disabled making an unambiguous conclusion about the efficiency of phosphorus accumulation among different communities, but suggested slight potential of phosphorus harvesting by metaphyton in this pond. Due to the shorter exposure time that brings the reduced risk of unpredictable changes in the ecosystem, as well as the considerable amount of accumulated phosphorus, large-scale application of one-month exposed periphyton developed on artificial substrates would be more advisable for phosphorus harvesting in nutrient affected shallow ponds.

This is a preview of subscription content, access via your institution.

References

  1. Addinsoft. 2020. XLSTAT statistical and data analysis solution. New York, USA, https://www.xlstat.com.

  2. Adey W, Luckett C, Jensen K. 1993. Phosphorus removal from natural waters using controlled algal production. Restoration Ecology, 1(1): 29–39, https://doi.org/10.1111/j.1526-100X.1993.tb00006.x.

    Article  Google Scholar 

  3. Analytical Methods Committee. 1960. Methods for the destruction of organic matter. The Analyst, 85(1014): 643–656.

    Article  Google Scholar 

  4. APHA. 1995. Standard Methods for the Examination of Water and Wastewater. 19th ed. Washington, DC: American Public Health Association Inc.

    Google Scholar 

  5. Arar E J. 1997. Method 446.0: In Vitro Determination of Chlorophylls a, b, c1 + c2 and Pheopigments in Marine and Freshwater Algae by Visible Spectrophotometry. National Exposure Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency Cincinnati, Ohio.

    Google Scholar 

  6. Azim M E, Beveridge M C M, Van Dam A A, Verdegem M C J. 2005. Periphyton and aquatic production: an introduction. CABI International, Wallingford, UK, 352p.

    Google Scholar 

  7. Bormans M, Maršálek B, Jančula D. 2016. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review. Aquatic Ecology, 50(3): 407–422, https://doi.org/10.1007/s10452-015-9564-x.

    Article  Google Scholar 

  8. Briggs A P. 1922. A modification of the Bell-Doisy phosphate method. The Journal of Biological Chemistry, 53(1): 13–16.

    Google Scholar 

  9. Cao J X, Hong X X, Pei G F. 2014. Removal and retention of phosphorus by periphyton from wastewater with high organic load. Water Science and Technology, 70(1): 62–69, https://doi.org/10.2166/wst.2014.195.

    Article  Google Scholar 

  10. Cardinale B J. 2011. Biodiversity improves water quality through niche partitioning. Nature, 472(7341): 86–89, https://doi.org/10.1038/nature09904.

    Article  Google Scholar 

  11. Carlson R E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22(2): 361–369, https://doi.org/10.4319/Lo.1977.22.2.0361.

    Article  Google Scholar 

  12. Carpenter S R, Christensen D L, Cole J J, Cottingham K L, He X, Hodgson J R, Kitchell J F, Knight S E, Pace M L, Post D M, Schindler D E, Voichick N. 1995. Biological control of eutrophication in lakes. Environmental Science and Technology, 29(3): 784–786.

    Article  Google Scholar 

  13. CEN. EN 15204: 2008 Water quality—Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique).

  14. D’Aiuto P E, Patt J M, Alban J P, Shatters R G, Evens T J. 2015. Algal turf scrubbers: Periphyton production and nutrient recovery on a South Florida citrus farm. Ecological Engineering, 75: 404–412, https://doi.org/10.1016/j.ecoleng.2014.11.054.

    Article  Google Scholar 

  15. Dodds W K. 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 39(5): 840–849, https://doi.org/10.1046/j.1529-8817.2003.02081.x.

    Article  Google Scholar 

  16. Drake W M, Scott J T, Evans-White M, Haggard B, Sharpley A, Rogers C W, Grantz E M. 2012. The effect of periphyton stoichiometry and light on biological phosphorus immobilization and release in streams. Limnology, 13(1): 97–106, https://doi.org/10.1007/s10201-011-0359-z.

    Article  Google Scholar 

  17. Drenner R W, Day D J, Basham S J, Smith D J, Jensen S I. 1997. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water. Ecological Applications, 7(2): 381–390, https://doi.org/10.1890/1051-0761(1997)007[0381:EWTSFR]2.0.CO;2.

    Article  Google Scholar 

  18. Ettl H. 1978. Xanthophyceae. 1. Teil. In: Ettl H, Gerloff J, Heynig H eds. Süßwasserflora von Mitteleuropa. Gustav Fischer, Jena.

    Google Scholar 

  19. Francoeur N S, Rier T S, Whorley B S. 2013. Methods for sampling and analyzing wetland algae. In: Anderson J, Davis C eds. Wetland techniques. Springer, Dordrecht, https://doi.org/10.1007/978-94-007-6931-1_1.

    Google Scholar 

  20. Friebele E S, Correll D L, Faust M A. 1978. Relationship between phytoplankton cell size and the rate of orthophosphate uptake: in situ observations of an estuarine population. Marine Biology, 45(1): 39–52, https://doi.org/10.1007/BF00388976.

    Article  Google Scholar 

  21. Guzzon A, Bohn A, Diociaiuti M, Albertano P. 2008. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Research, 42(16): 4 357–4 367, https://doi.org/10.1016/j.watres.2008.07.029.

    Article  Google Scholar 

  22. He H, Luo X G, Jin H, Gu J, Jeppesen E, Liu Z W, Li K Y 2017. Effects of exposed artificial substrate on the competition between phytoplankton and benthic algae: implications for shallow lake restoration. Water, 9(1): 24, https://doi.org/10.3390/w9010024.

    Article  Google Scholar 

  23. Hillebrand H, Dürselen C D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2): 403–424, https://doi.org/10.1046/j.1529-8817.1999.3520403.x.

    Article  Google Scholar 

  24. Ho Y B. 1979. Chemical composition studies on some aquatic macrophytes in three Scottish Lochs. I. Chlorophyll, ash, carbon, nitrogen and phosphorus. Hydrobiologia, 63(2): 161–166, https://doi.org/10.1007/BF00030079.

    Article  Google Scholar 

  25. Huber-Pestalozzi G, Komárek J, Fott B. 1983. Das phytoplankton des Süßwasser. Band XVI, 7. Teil, 1. Hälfte. Chlorophyceae, ordnung: chlorococcales. In: Die Binnengawässer, Elster H J, Ohle W eds. E. Schweizerbartsche Verlagsbuchhandung, Stuttgart.

    Google Scholar 

  26. IUCN, WCMC. 1994. Guidelines for Protected Area Management Categories. IUCN, Gland, Switzerland.

    Google Scholar 

  27. Jacoby J M. 1987. Alterations in periphyton characteristics due to grazing in a Cascade foothill stream. Freshwater Biology, 18(3): 495–508, https://doi.org/10.1111/j.1365-2427.1987.tb01334.x.

    Article  Google Scholar 

  28. Janse J H. 2004. Model Studies on the Eutrophication of Shallow Lakes and Ditches. Wageningen University, Wageningen.

    Google Scholar 

  29. Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2): 191–194.

    Article  Google Scholar 

  30. Jöbgen A M, Palm A, Melkonian M. 2004. Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia, 528(1–3): 123–142, https://doi.org/10.1007/s10750-004-2337-5.

    Article  Google Scholar 

  31. Kesaano M, Sims R C. 2014. Algal biofilm based technology for wastewater treatment. Algal Research, 5: 231–240, https://doi.org/10.1016/j.algal.2014.02.003.

    Article  Google Scholar 

  32. Komarek J, Anagnostidis K. 1998. Cyanoprokaryota. 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D eds. Süswasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg, Berlin.

    Google Scholar 

  33. Komarek J, Anagnostidis K. 2005. Cyanoprokaryota. 2. Teil: Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schagerl M eds. Süswasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg, Berlin.

    Google Scholar 

  34. Komarek J. 2013. Cyanoprokaryota-3. Teil/3rd part: Heterocytous Genera. In: Büdel B, Gärtner G, Krienitz L eds. Süswasserflora von Mitteleuropa. Springer Spektrum Verlag, Heidelberg, Berlin.

    Google Scholar 

  35. Lakatos G. 1989. Composition of reed periphyton (biotecton) in the Hungarian part of Lake Fertö. Biologisches Forschungsinstitut fur Burgenland, 71: 125–134.

    Google Scholar 

  36. Lange-Bertalot H, Hofmann G, Werum M. 2013. Diatomeen im süßwasser — benthos von mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. Koeltz Scientific Books, Königstein. p.908, 133

    Google Scholar 

  37. Lanza W G, Achá D, Point D, Masbou J, Alanoca L, Amouroux D, Lazzaro X. 2017. Association of a specific algal group with methylmercury accumulation in periphyton of a tropical high-altitude Andean lake. Archives of Environmental Contamination and Toxicology, 72(1): 1–10, https://doi.org/10.1007/s00244-016-0324-2.

    Article  Google Scholar 

  38. Larned S T. 2010. A prospectus for periphyton: recent and future ecological research. Journal of the North American Benthological Society, 29(1): 182–206, https://doi.org/10.1899/08-063.1.

    Article  Google Scholar 

  39. Liu J Z, Wang F W, Liu W, Tang C L, Wu C X, Wu Y H. 2016. Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton: From laboratory tank to polluted river. Bioresource Technology, 207: 142–149, https://doi.org/10.1016/j.biortech.2016.02.011.

    Article  Google Scholar 

  40. Lorenzen C J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography, 12(2): 343–346, https://doi.org/10.4319/Lo.1967.12.2.0343.

    Article  Google Scholar 

  41. Lu H Y, Wan J J, Li J, Shao H B, Wu Y H. 2016. Periphytic biofilm: A buffer for phosphorus precipitation and release between sediments and water. Chemosphere, 144: 2 058–2064, https://doi.org/10.1016/j.chemosphere.2015.10.129.

    Article  Google Scholar 

  42. Matheson F E, Quinn J M, Martin M L. 2012. Effects of irradiance on diel and seasonal patterns of nutrient uptake by stream periphyton. Freshwater Biology, 57(8): 1 617–1 630, https://doi.org/10.1111/j.1365-2427.2012.02822.x.

    Article  Google Scholar 

  43. McCormick P V, Shuford III R B E, Chimney M J. 2006. Periphyton as a potential phosphorus sink in the Everglades nutrient removal project. Ecological Engineering, 27(4): 279–289, https://doi.org/10.1016/j.ecoleng.2006.05.018.

    Article  Google Scholar 

  44. Mei X Y, Zhang X F. 2015. Periphyton responses to nitrogen and phosphorus enrichment of shallow lake systems dominated by submerged plants: A mesocosm study. Aquatic Ecosystem Health & Management, 18(1): 114–120, https://doi.org/10.1080/14634988.2015.998982.

    Article  Google Scholar 

  45. Metting B, Zimmerman W J, Crouch I V, Van Staden J. 1990. Agronomic uses of seaweed and microalgae. In: Akatsuka I ed. Introduction to Applied Phycology. SPB Academic Publishing, The Hague, pp. 589–627.

    Google Scholar 

  46. Metting F B Jr. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(5–6): 477–489, https://doi.org/10.1007/bf01574779.

    Article  Google Scholar 

  47. Mulbry W, Westhead K E, Pizarro C, Sikora L. 2005. Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technology, 96(4): 451–458, https://doi.org/10.1016/j.biortech.2004.05.026.

    Article  Google Scholar 

  48. Mulholland P J, Steinman A D, Palumbo A V, Elwood J W, Kirschtel D B. 1991. Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams. Ecology, 72(3): 966–982, https://doi.org/10.2307/1940597.

    Article  Google Scholar 

  49. Panswad T, Doungchai A, Anotai J. 2003. Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 37(2): 409–415, https://doi.org/10.1016/S0043-1354(02)00286-5.

    Article  Google Scholar 

  50. Pei G F, Wang Q, Liu G X. 2015. The role of periphyton in phosphorus retention in shallow lakes with different trophic status, China. Aquatic Botany, 12: 17–22, https://doi.org/10.1016/j.aquabot.2015.04.005.

    Article  Google Scholar 

  51. Périllon C, Pöschke F, Lewandowski J, Hupfer M, Hilt S. 2017. Stimulation of epiphyton growth by lacustrine groundwater discharge to an oligo-mesotrophic hard-water lake. Freshwater Science, 36(3): 555–570, https://doi.org/10.1086/692832.

    Article  Google Scholar 

  52. Popovský J, Pfiester L A. 1990. Dinophyceae (Dinoflagellida). In: Ettl H, Gerloff J, Heynig H, et al eds. Süwasserflora von Mitteleuropa. Fischer G. Verlag, Jena, Stuttgart.

    Google Scholar 

  53. Pratt C, Parsons S A, Soares A, Martin B D. 2012. Biologically and chemically mediated adsorption and precipitation of phosphorus from wastewater. Current Opinion in Biotechnology, 23(6): 890–896, https://doi.org/10.1016/j.copbio.2012.07.003.

    Article  Google Scholar 

  54. Reynolds C S. 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge.

    Google Scholar 

  55. Roeselers G, Van Loosdrecht M C M, Muyzer G. 2008. Phototrophic biofilms and their potential applications. Journal of Applied Phycology, 20(3): 227–235, https://doi.org/10.1007/s10811-007-9223-2.

    Article  Google Scholar 

  56. Scheffer M. 2004. Ecology of shallow lakes. Springer, Netherlands. 357p.

    Google Scholar 

  57. Shannon C E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27(3): 379–423.

    Article  Google Scholar 

  58. Sindelar H R, Yap J N, Boyer T H, Brown M T. 2015. Algae scrubbers for phosphorus removal in impaired waters. Ecological Engineering, 85: 144–158, https://doi.org/10.1016/j.ecoleng.2015.09.002.

    Article  Google Scholar 

  59. Starmach K. 1974. Cryptophyceae, Dinophyceae, Raphidophyceae. Tom 4. In: Starmach K, Sieminska, J eds. Flora Slodkowodna Polski. Panstwowe Wydawnictwo Naukowe, Warszawa-Krakow.

    Google Scholar 

  60. Starmach K. 1983. Flora Slodkowodna Polski Tom 3. Euglenophyta. Panstwowe Wydawnictwo Naukowe, Warszawa-Krakow.

    Google Scholar 

  61. Starmach K. 1985. Chrysophyceae und Haptophyceae. In: Ettl H, Gerloff J, Heynig H, et al eds. Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York.

    Google Scholar 

  62. Stojanović V, Savić S. 2013. Management challenges in special nature reserve ‘Gornje Podunavlje’ and preparations for its proclamation of biosphere reserve. Geographica Pannonica, 17(4): 98–105.

    Article  Google Scholar 

  63. Stojanović V, Velojić M, Šakić R. 2014. Strategy for sustainable tourism development in the Special Nature Reserve ‘Gornje Podunavlje’. SNR Gornje Podunavlje, Sombor.

  64. Sukačová K, Červený J. 2017. Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal-review of past trends and future perspectives in the context of nutrient recovery. European Journal of Environmental Sciences, 7(1): 63–72, https://doi.org/10.14712/23361964.2017.6.

    Article  Google Scholar 

  65. Sukačová K, Trtílek M, Rataj T. 2015. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research, 71: 55–63, https://doi.org/10.1016/j.watres.2014.12.049.

    Article  Google Scholar 

  66. Ter Braak C J F, Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USA.

    Google Scholar 

  67. Trbojević I S, Predojević D D, Šinžar-Sekulić J B, Nikolić N V, Jovanović I M, Subakov-Simić G V. 2019. Charophytes of gornje podunavlje ponds: revitalization process aspects. Matica Srpska Journal for Natural Sciences, 136: 123–131, https://doi.org/10.2298/ZMSPN1936123T.

    Article  Google Scholar 

  68. Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 9: 1–38.

    Google Scholar 

  69. Wu Y H, Xia L Z, Yu Z Q, Shabbir S, Kerr P G. 2014. In situ bioremediation of surface waters by periphytons. Bioresource Technology, 151: 367–372, https://doi.org/10.1016/j.biortech.2013.10.088.

    Article  Google Scholar 

  70. Wu Y H, Zhang S Q, Zhao H J, Yang L Z. 2010. Environmentally benign periphyton bioreactors for controlling cyanobacterial growth. Bioresource Technology, 101(24): 9 681–9 687, https://doi.org/10.1016/j.biortech.2010.07.063.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to PD Dr. Sabine Hilt for critical reading of the manuscript and constructive suggestions and comments. We gratefully acknowledge the employees of ‘Vojvodinašume’ who showed a warm welcome and spent time with us in the field. Many thanks to Mrs Ana Blagojević Ponjavić for technical support during the field and laboratory. We sincerely thank the anonymous reviewers for their careful reading of our manuscript and many insightful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marija Pećić.

Additional information

Supported by the Ministry of Science and Technological Development, Republic of Serbia, Projects (Nos. 451-03-68/2020-14/200178, 451-03-68/2020-14/200026)

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pećić, M., Popović, S., Milutinović, V. et al. Efficiency of phosphorus accumulation by plankton, periphyton developed on submerged artificial substrata and metaphyton: in-situ observation in two shallow ponds. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0116-4

Download citation

Keywords

  • periphyton
  • phosphorus accumulation
  • shallow ponds
  • (phyto)plankton
  • metaphyton
  • eutrophication