Isolation of a novel strain of Cyanobacterium sp. with good adaptation to extreme alkalinity and high polysaccharide yield

Abstract

The use of high alkaline medium is a feasible way to provide carbon source and prevent biological contamination for the outdoor cultivation of alkaliphilic microalgae and cyanobacteria. A novel cyanobacterial strain was isolated from the open pond of a marine green alga (Picochlorum sp. SCSIO-45015, Sanya, Hainan) and identified as Cyanobacterium sp. SCSIO-45682. The effects of initial sodium bicarbonate (NaHCO3) concentrations on the growth and biochemical composition of Cyanobacterium sp. SCSIO-45682 were investigated. The results demonstrated that Cyanobacterium sp. SCSIO-45682 had good adaptation to 16.8 g/L NaHCO3 (the same concentration of NaHCO3 used in Zarrouk medium for Spirulina). Moreover, the yields of biomass, polysaccharide, chlorophyll a (chl a), and phycocyanin increased under high NaHCO3 concentrations. The maximum final biomass concentration of 2.5 g/L was observed at 8.4 g/L NaHCO3, while the highest intracellular total saccharide content of 49.2% of dry weight (DW) and exopolysaccharide (EPS) concentration of 93 mg/L were achieved at the NaHCO3 concentration of 16.8 g/L. The crude protein content declined under high NaHCO3 concentrations, which provide a possible explanation for the accumulation of polysaccharide. This study shows a good potential of alkaliphilic Cyanobacterium sp. SCSIO-45682 as a polysaccharide feedstock.

This is a preview of subscription content, access via your institution.

References

  1. Badger M R, Price G D. 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383): 609–622, https://doi.org/10.1093/jxb/erg076.

    Article  Google Scholar 

  2. Becker W. 2004. Microalgae in human and animal nutrition. In: Richmond A ed. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd, London, UK. p.312–351.

    Google Scholar 

  3. Bennett A, Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2): 419–435, https://doi.org/10.1083/jcb.58.2.419.

    Article  Google Scholar 

  4. Bradburn M J, Lewis Jr W M, McCutchan Jr J H. 2012. Comparative adaptations of Aphanizomenon and Anabaena for nitrogen fixation under weak irradiance. Freshwater Biology, 57(5): 1 042–1 049, https://doi.org/10.1111/j.1365-2427.2012.02765.x.

    Article  Google Scholar 

  5. Chi Z Y, Elloy F, Xie Y X, Hu Y C, Chen S L. 2014. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Applied Biochemistry and Biotechnology, 172(1): 447–457, https://doi.org/10.1007/s12010-013-0515-5.

    Article  Google Scholar 

  6. Chi Z Y, Xie Y X, Elloy F, Zheng Y B, Hu Y C, Chen S L. 2013. Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresource Technology, 133: 513–521, https://doi.org/10.1016/j.biortech.2013.01.150.

    Article  Google Scholar 

  7. Demay J, Bernard C, Reinhardt A, Marie B. 2019. Natural products from cyanobacteria: focus on beneficial activities. Marine Drugs, 17(6): 320, https://doi.org/10.3390/md17060320.

    Article  Google Scholar 

  8. Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350–356, https://doi.org/10.1021/ac60111a017.

    Article  Google Scholar 

  9. Ehling-Schulz M, Bilger W, Scherer S. 1997. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology, 179(6): 1 940–1 945, https://doi.org/10.1128/jb.179.6.1940-1945.1997.

    Article  Google Scholar 

  10. González-Fernández C, Ballesteros M. 2012. Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnology Advances, 30(6): 1 655–1 661, https://doi.org/10.1016/).biotechadv.2012.07.003.

    Article  Google Scholar 

  11. Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N. 2017. Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. Journal of Applied Phycology, 29(4): 1 781–1 790, https://doi.org/10.1007/s10811-017-1133-3.

    Article  Google Scholar 

  12. Grossmann L, Hinrichs J, Weiss J. 2019. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, published Online First, October 2019, https://doi.org/10.1080/10408398.2019.1672137.

  13. Gudmundsdottir A B, Brynjolfsdottir A, Olafsdottir E S, Hardardottir I, Freysdottir J. 2019. Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes. International Immunopharmacology, 69: 328–336, https://doi.org/10.1016/j.intimp.2019.01.044.

    Article  Google Scholar 

  14. Gudmundsdottir A B, Omarsdottir S, Brynjolfsdottir A, Paulsen B S, Olafsdottir E S, Freysdottir J. 2015. Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland increase IL-10 secretion by human dendritic cells and their ability to reduce the IL-17+RORγt+/IL-10+FoxP3+ ratio in CD4+ T cells. Immunology Letters, 163(2): 157–162, https://doi.org/10.1016/j.imlet.2014.11.008.

    Article  Google Scholar 

  15. Hayashi K, Hayashi T, Kojima I. 1996. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12(15): 1 463–1 471, https://doi.org/10.1089/aid.1996.12.1463.

    Article  Google Scholar 

  16. Ibelings B W, Maberly S C. 1998. Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnology and Oceanography, 43(3): 408–419, https://doi.org/10.4319/lo.1998.43.3.0408.

    Article  Google Scholar 

  17. Karatay S E, Dönmez G. 2011. Microbial oil production from thermophile cyanobacteria for biodiesel production. Applied Energy, 88(11): 3 632–3 635, https://doi.org/10.1016/j.apenergy.2011.04.010.

    Article  Google Scholar 

  18. Khan M I, Shin J H, Kim J D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1): 36, https://doi.org/10.1186/s12934-018-0879-x.

    Article  Google Scholar 

  19. Khozin-Goldberg I, Shrestha P, Cohen Z. 2005. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochimica et Biophysica Acta (BBA) — Molecular and Cell Biology of Lipids, 1738(1–3): 63–71, https://doi.org/10.1016/j.bbalip.2005.09.005.

    Article  Google Scholar 

  20. Kumar A S, Mody K, Jha B. 2007. Bacterial exopolysaccharides — a perception. Journal of Basic Microbiology, 47(2): 103–117, https://doi.org/10.1002/jobm.200610203.

    Article  Google Scholar 

  21. Kusama Y, Inoue S, Jimbo H, Takaichi S, Sonoike K, Hihara Y, Nishiyama Y. 2015. Zeaxanthin and echinenone protect the repair of photosystem II from inhibition by singlet oxygen in Synechocystis sp. PCC 6803. Plant and Cell Physiology, 56(5): 906–916, https://doi.org/10.1093/pcp/pcv018.

    Article  Google Scholar 

  22. Lau N S, Matsui M, Abdullah A A A. 2015. Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. BioMed Research International, 2015: 754934, https://doi.org/10.1155/2015/754934.

    Google Scholar 

  23. Li T, Xu J, Wu H B, Jiang P L, Chen Z S, Xiang W Z. 2019. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine Drugs, 17(2): 124, https://doi.org/10.3390/md17020124.

    Article  Google Scholar 

  24. Liu H J, Blankenship R E. 2019. On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. Biochimica et Biophysica Acta (BBA) — Bioenergetics, 1860(11): 148079, https://doi.org/10.1016/j.bbabio.2019.148079.

    Article  Google Scholar 

  25. Ma T, Zuazaga G. 1942. Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Industrial & Engineering Chemistry Analytical Edition, 14(3): 280–282, https://doi.org/10.1021/i560103a035.

    Article  Google Scholar 

  26. Masamoto K, Furukawa K. 1997. Accumulation of zeaxanthin in cells of the cyanobacterium, Synechococcus sp. strain PCC 7942 grown under high irradiance. Journal of Plant Physiology, 151(3): 257–261, https://doi.org/10.1016/S0176-1617(97)80250-7.

    Article  Google Scholar 

  27. Meléndez-Martínez A J. 2019. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition Food Research, 63(15): 1801045, https://doi.org/10.1002/mnfr.201801045.

    Article  Google Scholar 

  28. Meng F P, Cui H W, Wang Y J, Li X L. 2018. Responses of a new isolated Cyanobacterium aponinum strain to temperature, pH, CO2 and light quality. Journal of Applied Phycology, 30(3): 1 525–1 532, https://doi.org/10.1007/s10811-018-1411-8.

    Article  Google Scholar 

  29. Moro I, Rascio N, La Rocca N, Di Bella M, Andreoli C. 2007. Cyanobacterium aponinum, a new cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy). Algological Studies, 123: 1–15, https://doi.org/10.1127/1864-1318/2007/0123-0001.

    Article  Google Scholar 

  30. Morone J, Alfeus A, Vasconcelos V, Martins R. 2019. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals- a new bioactive approach. Algal Research, 41: 101541, https://doi.org/10.1016/j.algal.2019.101541.

    Article  Google Scholar 

  31. Mourelle M L, Gómez C P, Legido J L. 2017. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4(4): 46, https://doi.org/10.3390/cosmetics4040046.

    Article  Google Scholar 

  32. Nicolaus B, Panico A, Lama L, Romano I, Manca M C, De Giulio A, Gambacorta A. 1999. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry, 52(4): 639–647, https://doi.org/10.1016/S0031-9422(99)00202-2.

    Article  Google Scholar 

  33. Pagels F, Guedes A C, Amaro H M, Kijjoa A, Vasconcelos V 2019. Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnology Advances, 37(3): 422–443, https://doi.org/10.1016/j.biotechadv.2019.02.010.

    Article  Google Scholar 

  34. Rieger C, Weiland P. 2006. Prozessstörungen frühzeitig erkennen. Biogas Journal, 4: 18–20.

    Google Scholar 

  35. Schipper K, Al Muraikhi M, Alghasal G S H S, Saadaoui I, Bounnit T, Rasheed R, Dalgamouni T, Al Jabri H M S J, Wijffels R H, Barbosa M J. 2019. Potential of novel desert microalgae and cyanobacteria for commercial applications and CO2 sequestration. Journal of Applied Phycology, 31(4): 2 231–2 243, https://doi.org/10.1007/s10811-019-01763-3.

    Article  Google Scholar 

  36. Strunecký O, Kopejtka K, Goecke F, Tomasch J, Lukavský J, Neori A, Kahl S, Pieper D H, Pilarski P, Kaftan D, Koblížek M. 2019. High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles, 23(1): 35–48, https://doi.org/10.1007/s00792-018-1058-z.

    Article  Google Scholar 

  37. Su C D, Chi Z M, Lu W D. 2007. Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113. Chinese Journal of Oceanology and Limnology, 25(4): 411–417, https://doi.org/10.1007/s00343-007-0411-3.

    Article  Google Scholar 

  38. Sudo H, Burgess J G, Takemasa H N, Nakamura N, Matsunaga T. 1995. Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia. Current Microbiology, 30(4): 219–222, https://doi.org/10.1007/BF00293636.

    Article  Google Scholar 

  39. Viola S, Bailleul B, Yu J F, Nixon P, Sellés J, Joliot P, Wollman F A. 2019. Probing the electric field across thylakoid membranes in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 116(43): 21 900–21 906, https://doi.org/10.1073/pnas.1913099116.

    Article  Google Scholar 

  40. Volkmann H, Imianovsky U, Oliveira J L B, Sant’Anna E S. 2008. Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian Journal of Microbiology 39(1): 98–101, https://doi.org/10.1590/S1517-838220080001000022.

    Article  Google Scholar 

  41. Vonshak A, Boussiba S, Abeliovich A, Richmond A. 1983. Production of Spirulina biomass: maintenance of monoalgal culture outdoors. Biotechnology and Bioengineering, 25(2): 341–349, https://doi.org/10.1002/bit.260250204.

    Article  Google Scholar 

  42. Winckelmann D, Bleeke F, Bergmann P, Elle C, Klöck G. 2016. Detection of weed algae in open pond cultures of Cyanobacterium aponinum using PAM. International Aquatic Research, 8(1): 81–90, https://doi.org/10.1007/s40071-016-0126-1.

    Article  Google Scholar 

  43. Zarrouk C. 1966. Contribution à L’ėtude Ďune cyanophycė. Influence de Divers Facteurs physiques et Chimiques Sur la Croissance et la Photosynthėse de Spirulina maxima (Setch. Et Garndner) Geitler. Ph.D. thesis, Faculte des Sciences, Universitė de Paris, Paris.

    Google Scholar 

  44. Zheng W F, Chen C F, Cheng Q P, Wang Y Q, Chu C C. 2006. Oral administration of exopolysaccharide from Aphanothece halophytica (Chroococcales) significantly inhibits influenza virus (H1N1)-induced pneumonia in mice. International Immunopharmacology, 6(7): 1 093–1 099, https://doi.org/10.1016/j.intimp.2006.01.020.

    Article  Google Scholar 

  45. Zhu C B, Zhai X Q, Wang J H, Han D S, Li Y H, Xi Y M, Tang Y J, Chi Z Y. 2018. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Applied Microbiology and Biotechnology, 102(20): 8 979–8 987, https://doi.org/10.1007/s00253-018-9258-0.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yandu Lu or Wenzhou Xiang.

Additional information

Supported by Key-Area Research and Development Program of Guangdong Province (No. 2020B1111030004), the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0406), the 13th Five-Year Plan Marine Economy Innovation Development Demonstration Project (No. BHSFS004), the Project of State Key Laboratory of Marine Resource Utilization in South China Sea (No. 2018004), the Guizhou Education Department Young scientific talents Promoting Program (No. KY [2016]160), and the Project of Danzi (WetCode) Group (No. DZ201501)

Data Availability Statement

The data that support the fi ndings of the current study are available from the corresponding author on reasonable request.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, T., Yang, B. et al. Isolation of a novel strain of Cyanobacterium sp. with good adaptation to extreme alkalinity and high polysaccharide yield. J. Ocean. Limnol. (2021). https://doi.org/10.1007/s00343-020-0113-7

Download citation

Keyword

  • alkaliphilic cyanobacterium
  • biochemical composition
  • Cyanobacterium sp. SCSIO-45682
  • high sodium bicarbonate (NaHCO3) concentrations
  • polysaccharide