Petroleum exploitation enriches the sulfonamide resistance gene sul2 in offshore sediments

Abstract

Antibiotic resistance genes (ARGs) have been considered as emerging contaminants in nature owing to their wide distribution and human health risk. Anthropogenic activities can increase the diversity and abundance of ARGs and promote their spread in environment. Offshore environment is affected by multiple types of anthropogenic activities, of which excessive accumulation of petroleum substances poses a serious threat. Our previous experimental study has demonstrated that petroleum can increase the abundance of sulfonamide resistance genes (SRGs) in the seawater through horizontal gene transfer. However, the influence of petroleum substances on SRGs in offshore environment, especially adjacent the petroleum exploitation platform, is still unclear. Therefore, the effect of offshore oil exploitation on SRGs was investigated in the surface sediments collected from the Liaodong Bay, north China. The genes of sul1 and sul2 were present in all of the collected samples, while the sul3 gene was not detected in any sediments. The absolute abundance of sul2 gene in each sample was higher than sul1 gene. Class 1 integrons enhanced the maintenance and propagation of sul1 gene but not sul2 gene. More importantly, the results indicate that the absolute abundance of sul2 gene present in the offshore sediments that affected by petroleum exploitation was significantly higher than those in control. These findings provided direct evidence that offshore oil exploitation can influence the propagation of SRGs and implied that a more comprehensive risk assessment of petroleum substances to public health risks should be conducted.

This is a preview of subscription content, access via your institution.

References

  1. Akpoveta O V, Osakwe S A. 2014. Determination of heavy metal contents in refined petroleum products. IOSR Journal of Applied Chemistry, 7(6): 1–2.

    Google Scholar 

  2. Amos G C A, Gozzard E, Carter C E, Mead A, Bowes M J, Hawkey P M, Zhang L H, Singer A C, Gaze W G, Wellington E M H. 2015. Validated predictive modelling of the environmental resistome. The ISME Journal, 9(6): 1 467–1 476.

    Article  Google Scholar 

  3. Andrade L L, Leite D C A, Ferreira E M, Ferreira L Q, Paula G R, Maguire M J, Hubert C R J, Peixoto R S, Domingues R MC P, Rosado A S. 2012. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment. BMC Microbiology, 12: 186.

    Article  Google Scholar 

  4. Ashbolt N J, Amézquita A, Backhaus T, Borriello P, Brandt K K, Collignon P, Coors A, Finley R, Gaze W H, Heberer T, Lawrence J R, Larsson D G J, McEwen S A, Ryan J J, Schönfeld J, Silley P, Snape J R, van den Eede C, Topp E. 2013. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121(9): 993–1001.

    Article  Google Scholar 

  5. Ben Said O, Goñi-Urriza M S, El Bour M, Dellali M, Aissa P, Duran R. 2008. Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. Journal of Applied Microbiology, 104(4): 987–997.

    Article  Google Scholar 

  6. Chen B W, He R, Yuan K, Chen E Z, Lin L, Chen X, Sha S, Zhong J N, Lin L, Yang L H, Yang Y, Wang X W, Zou S C, Luan T G. 2017. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. Environmental Pollution, 220: 1 005–1 013.

    Article  Google Scholar 

  7. Chen H Y, Chen R H, Jing L J, Bai X M, Teng Y G. 2019. A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: application to an urban river in Beijing. Environmental Pollution, 245: 398–407.

    Article  Google Scholar 

  8. Di Cesare A, Eckert E M, D’Urso S, Bertoni R, Gillan D C, Wattiez R, Corno G. 2016. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Research, 94: 208–214.

    Article  Google Scholar 

  9. Engelstädter J, Harms K, Johnsen P J. 2016. The evolutionary dynamics of integrons in changing environments. The ISME Journal, 10(6): 1 296–1 307.

    Article  Google Scholar 

  10. Gillings M R, Gaze W H, Pruden A, Smalla K, Tiedje J M, Zhu Y G. 2015. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9(6): 1 269–1 279.

    Article  Google Scholar 

  11. Gillings M R. 2014. Integrons: past, present, and future. Microbiology and Molecular Biology Reviews, 78(2): 257–277.

    Article  Google Scholar 

  12. Hu H W, Wang J T, Li J, Shi X Z, Ma Y B, Chen D L, He J Z. 2016. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environmental Science & Technology, 51(2): 790–800.

    Article  Google Scholar 

  13. Krulwich T A, Lewinson O, Padan E, Bibi E. 2005. Do physiological roles foster persistence of drug/multidrugefflux transporters? A case study. Nature Reviews Microbiology, 3(7): 566–572.

    Article  Google Scholar 

  14. Kweon O, Kim S J, Blom J, Kim S K, Kim B S, Baek D H, Park S, Sutherland J B, Cerniglia C E. 2015. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evolutionary Biology, 15(1): 21.

    Article  Google Scholar 

  15. Lu Z H, Na G S, Gao H, Wang L J, Bao C G, Yao Z W. 2015. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Science of the Total Environment, 527–528: 429–438.

    Article  Google Scholar 

  16. Luo Y, Mao D Q, Rysz M, Zhou Q X, Zhang H J, Xu L, Alvarez P J J. 2010. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science & Technology, 44(19): 7 220–7 225.

    Article  Google Scholar 

  17. Luo Y, Wang Q, Lu Q, Mu Q H, Mao D Q. 2014. An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class I integrons. Environmental Science & Technology Letters, 1(5): 266–270.

    Article  Google Scholar 

  18. Máthé I, Benedek T, Táncsics A, Palatinszky M, Lányi S, Márialigeti K. 2012. Diversity, activity, antibiotic and heavy metal resistance of bacteria from petroleum hydrocarbon contaminated soils located in Harghita County (Romania). International Biodeterioration & Biodegradation, 73: 41–49.

    Article  Google Scholar 

  19. McKinney C W, Loftin K A, Meyer M T, Davis J G, Pruden A. 2010. tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environmental Science & Technology, 44(16): 6 102–6 109.

    Article  Google Scholar 

  20. Niu Z G, Zhang K, Zhang Y. 2016. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China. Marine Pollution Bulletin, 107(1): 245–250.

    Article  Google Scholar 

  21. Pruden A, Arabi M, Storteboom H N. 2012. Correlation between upstream human activities and riverine antibiotic resistance genes. Environmental Science & Technology, 46(21): 11 541–11 549.

    Article  Google Scholar 

  22. Pruden A, Pei R T, Storteboom H, Carlson K H. 2006. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science & Technology, 40(23): 7 445–7 450.

    Article  Google Scholar 

  23. Reid C J, Chowdhury P R, Djordjevic S P. 2015. Tn6026 and Tn6029 are found in complex resistance regions mobilised by diverse plasmids and chromosomal islands in multiple antibiotic resistant Enterobacteriaceae. Plasmid, 80: 127–137.

    Article  Google Scholar 

  24. Sander B C, Kalff J. 1993. Factors controlling bacterial production in marine and freshwater sediments. Microbial Ecology, 26(2): 79–99.

    Article  Google Scholar 

  25. Silva C S, Moreira I T A, de Oliveira O M C, Queiroz A F S, Garcia K S, Falcão B A, Escobar N F C, Rios M C. 2014. Spatial distribution and concentration assessment of total petroleum hydrocarbons in the intertidal zone surface sediment of Todos os Santos bay, Brazil. Environmental Monitoring and Assessment, 186(2): 1 271–1 280.

    Article  Google Scholar 

  26. Simons K L, Sheppard P J, Adetutu E M, Kadali K, Juhasz A L, Manefield M, Sarma P M, Lal B, Ball A S. 2013. Carrier mounted bacterial consortium facilitates oil remediation in the marine environment. Bioresource Technology, 134: 107–116.

    Article  Google Scholar 

  27. Stepanauskas R, Glenn T C, Jagoe C H, Tuckfield R C, Lindell A H, King C J, McArthur J V. 2006. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 8(9): 1 510–1 514.

    Article  Google Scholar 

  28. Storteboom H, Arabi M, Davis J G, Crimi B, Pruden A. 2010. Tracking antibiotic resistance genes in the south Platte River Basi using molecular signature of urban, agricultural, and pristine sources. Environmental Science & Technology, 44(19): 7 397–7 404.

    Article  Google Scholar 

  29. Suzuki M T, Taylor L T, DeLong E F. 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5’-nuclease assays. Applied and Environmental Microbiology, 66(11): 4 605–4 614.

    Article  Google Scholar 

  30. Teng C Y, Hao F, Zou H Y, Xu C G. 2017. Development and evolution of the structure JX1-1 in Liaodong bay depression and its significance in petroleum exploration. Oil Geophysical Prospecting, 52(3): 599–611. (in Chinese with English abstract)

    Google Scholar 

  31. Wang F, Stedtfeld R D, Kim O S, Chai B L, Yang L X, Stedtfeld T M, Hong S G, Kim D, Lim H S, Hashsham S A, Tiedje J M, Sul W J. 2016. Influence of soil characteristics and proximity to Antarctic research stations on abundance of antibiotic resistance genes in soils. Environmental Science & Technology, 50(23): 12 621–12 629.

    Article  Google Scholar 

  32. Wang J, Wang J, Zhao Z L, Chen J W, Lu H, Liu G F, Zhou J T, Guan X Y. 2017. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. Environmental Pollution, 231: 1 145–1 152.

    Article  Google Scholar 

  33. Wang Q, Mao D Q, Luo Y. 2015. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4. Environmental Science & Technology, 49(14): 8 731–8 740.

    Article  Google Scholar 

  34. Wang W P, Zhong R Q, Shan D P, Shao Z Z. 2014. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow Sea, China. Applied Microbiology and Biotechnology, 98(16): 7 253–7 269.

    Article  Google Scholar 

  35. Wu B, Song J M, Li X G. 2014. Evaluation of potential relationships between benthic community structure and toxic metals in Laizhou Bay. Marine Pollution Bulletin, 87(1–2): 247–256.

    Article  Google Scholar 

  36. Yang J, Wang C, Shu C, Liu L, Geng J N, Hu S N, Feng J. 2013. Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microbial Ecology, 65(4): 975–981.

    Article  Google Scholar 

  37. Yang J, Wang C, Wu J Y, Liu L, Zhang G, Feng J. 2014. Characterization of a multiresistant mosaic plasmid from a fish farm sediment Exiguobacterium sp. isolate reveals aggregation of functional clinic-associated antibiotic resistance genes. Applied and Environmental Microbiology, 80(4): 1 482–1 488.

    Article  Google Scholar 

  38. Yuan C G, Shi J B, He B, Liu J F, Liang L N, Jiang G B. 2004. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30(6): 769–783.

    Article  Google Scholar 

  39. Zhang T, Fang H H P. 2006. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology, 70(3): 281–289.

    Article  Google Scholar 

  40. Zhang X X, Zhang T, Zhang M, Fang H H P, Cheng S P. 2009. Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. Applied Microbiology & Biotechnology, 82(6): 1 169–1 177.

    Article  Google Scholar 

  41. Zhang Y P, Niu Z G, Zhang Y, Zhang K. 2018. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them. Environmental Pollution, 236: 126–136.

    Article  Google Scholar 

  42. Zhang Y, Gu A Z, He M, Li D, Chen J M. 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environmental Science & Technology, 51(1): 570–580.

    Article  Google Scholar 

  43. Zhou R, Qin X B, Peng S T, Deng S H. 2014. Total petroleum hydrocarbons and heavy metals in the surface sediments of Bohai bay, China: long-term variations in pollution status and adverse biological risk. Marine Pollution Bulletin, 83(1): 290–297.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiti Zhou.

Additional information

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhou, J. Petroleum exploitation enriches the sulfonamide resistance gene sul2 in offshore sediments. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0072-z

Download citation

Keywords

  • petroleum exploitation
  • sulfonamide resistance gene
  • quantitative real-time PCR
  • offshore sediment
  • Class 1 integrase