Skip to main content
Log in

Calcium isotopic signatures of depleted mid-ocean ridge basalts from the northeastern Pacific

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A number of high-temperature processes (e.g., melt-rock reactions, metasomatism, partial melting) can produce significant Ca isotopic fractionation and heterogeneity in the mantle, but the mechanism for such fractionation remains obscure. To investigate the effect of mantle partial melting on Ca isotopic fractionation, we reported high-precision Ca isotopic compositions of depleted mid-ocean ridge basalts (MORBs) from the East Pacific Rise and Ecuador Rift in the northeastern Pacific. The δ44/40Ca of these MORB samples exhibit a narrow variation from 0.84‰ to 0.88‰ with an average of 0.85‰±0.03‰, which are similar to those of reported MORBs (0.83‰±0.11‰) and back-arc basin basalts (BABBs, 0.80‰±0.08‰) in literature, but are lower than the estimate value for the bulk silicate Earth (BSE, 0.94‰±0.05‰). The low δ44/40Ca signatures of MORB samples in this study cannot be caused by fractional crystallization, since intermediate-mafic differentiation has been demonstrated having only limited effects on Ca isotopic fractionation. Instead, the offset of δ44/40Ca between MORBs and the BSE is most likely produced by mantle partial melting. During this process, the light Ca isotopes are preferentially transferred to the melt, while the heavy ones tend to stay in the residue, which is consistent with the fact that δ44/40Ca of melt-depleted peridotites increases with partial melting in literature. The behavior of Ca isotopes during mantle partial melting is closely related to the inter-mineral (Cpx and Opx) Ca isotopic fractionation and melting mineral modes. Mantle partial melting is one of the common processes that can induce lower δ44/40Ca values in basalts and Ca isotopic heterogeneity in Earth’s mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amini M, Eisenhauer A, Böhm F, Fietzke J, Bach W, Garbe-Schönberg D, Rosner M, Bock B, Lackschewitz K S, Hauff F. 2008. Calcium isotope (δ 44/40 Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45′N). Geochimica et Cosmochimica Acta, 72 (16): 4 107–4 122.

    Google Scholar 

  • Amini M, Eisenhauer A, Böhm F, Holmden C, Kreissig K, Hauff F, Jochum K P. 2009. Calcium Isotopes (δ 44/40 Ca) in MPI‐DING reference glasses, USGS rock powders and various rocks: evidence for Ca isotope fractionation in terrestrial silicates. Geostandards and Geoanalytical Research, 33 (2): 231–247.

    Google Scholar 

  • Amsellem E, Moynier F, Pringle E A, Bouvier A, Chen H, Day J M D. 2017. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters, 469: 75–83.

    Google Scholar 

  • Amsellem E, Moynier F, Puchtel I S. 2019. Evolution of the Ca isotopic composition of the mantle. Geochimica et Cosmochimica Acta, 258: 195–206.

    Google Scholar 

  • Antonelli M A, Mittal T, McCarthy A, Tripoli B, Watkins J M, DePaolo D J. 2019a. Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems. Proceedings of the National Academy of Sciences of the United States of America, 116 (41): 20 315–2 0321.

    Google Scholar 

  • Antonelli M A, Schiller M, Schauble E A, Mittal T, DePaolo D J, Chacko T, Grew E S, Tripoli B. 2019b. Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals. Earth and Planetary Science Letters, 517: 71–82.

    Google Scholar 

  • Blättler C L, Higgins J A. 2017. Testing Urey’s carbonatesilicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth and Planetary Science Letters, 479: 241–251.

    Google Scholar 

  • Charlier B L A, Ginibre C, Morgan D, Nowell G M, Pearson D G, Davidson J P, Ottley C J. 2006. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chemical Geology, 232 (3-4): 114–133.

    Google Scholar 

  • Chen C F, Ciazela J, Li W, Dai W, Wang Z C, Foley S F, Li M, Hu Z C, Liu Y S. 2019a. Calcium isotopic compositions of oceanic crust at various spreading rates. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2019.07.008.

    Google Scholar 

  • Chen C F, Dai W, Wang Z C, Liu Y S, Li M, Becker H, Foley S F. 2019b. Calcium isotope fractionation during magmatic processes in the upper mantle. Geochimica et Cosmochimica Acta, 249: 121–137.

    Google Scholar 

  • Chen C F, Liu Y S, Feng L P, Foley S F, Zhou L, Ducea M N, Hu Z C. 2018. Calcium isotope evidence for subductionenriched lithospheric mantle under the northern North China Craton. Geochimica et Cosmochimica Acta, 238: 55–67.

    Google Scholar 

  • Dai W, Wang Z C, Liu Y S, Chen C F, Zong K Q, Zhou L, Zhang G L, Li M, Moynier F, Hu Z C. 2020. Calcium isotope compositions of mantle pyroxenites. Geochimica et Cosmochimica Acta, 270: 144–159.

    Google Scholar 

  • DePaolo D J. 2004. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Reviews in Mineralogy and Geochemistry, 55 (1): 255–288.

    Google Scholar 

  • Du L, Long X P, Yuan C, Zhang Y Y, Huang Z Y, Sun M, Xiao W J. 2018. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: response to post-collisional extension triggered by slab breakoff. Lithos, 318-319: 47–59.

    Google Scholar 

  • Du L, Yuan C, Li X P, Zhang Y Y, Huang Z Y, Long X P. 2019a. Petrogenesis and geodynamic implications of the carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30 (6): 1 243–1 252.

    Google Scholar 

  • Du L, Zhang Y Y, Huang Z Y, Li X P, Yuan C, Wu B, Long X P. 2019b. Devonian to carboniferous tectonic evolution of the Kangguer Ocean in the Eastern Tianshan, NW China: insights from three episodes of granitoids. Lithos, 350-351: 105243.

    Google Scholar 

  • Fantle M S, Tipper E T. 2014. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth — Science Reviews, 129: 148–177.

    Google Scholar 

  • Farkaš J, Böhm F, Wallmann K, Blenkinsop J, Eisenhauer A, Van Geldern R, Munnecke A, Voigt S, Veizer J. 2007a. Calcium isotope record of Phanerozoic oceans: implications for chemical evolution of seawater and its causative mechanisms. Geochimica et Cosmochimica Acta, 71 (21): 5 117–5 134.

    Google Scholar 

  • Farkaš J, Buhl D, Blenkinsop J, Veizer J. 2007b. Evolution of the oceanic calcium cycle during the late Mesozoic: evidence from δ 44/40 Ca of marine skeletal carbonates. Earth and Planetary Science Letters, 253 (1-2): 96–111.

    Google Scholar 

  • Feng C Q, Qin T, Huang S C, Wu Z Q, Huang F. 2014. Firstprinciples investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene. Geochimica et Cosmochimica Acta, 143: 132–142.

    Google Scholar 

  • Feng L P, Zhou L, Yang L, DePaolo D J, Tong S Y, Liu Y S, Owens T L, Gao S. 2017. Calcium isotopic compositions of sixteen USGS reference materials. Geostandards and Geoanalytical Research, 41 (1): 93–106.

    Google Scholar 

  • Feng L P, Zhou L, Yang L, Zhang W, Wang Q, Tong S Y, Hu Z C. 2018. A rapid and simple single-stage method for Ca separation from geological and biological samples for isotopic analysis by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33 (3): 413–421.

    Google Scholar 

  • Gale A, Dalton C A, Langmuir C H, Su Y J, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14 (3): 489–518.

    Google Scholar 

  • Green D H. 1973. Experimental melting studies on a model upper mantle composition at high pressure under watersaturated and water-undersaturated conditions. Earth and Planetary Science Letters, 19 (1): 37–53.

    Google Scholar 

  • He Y S, Wang Y, Zhu C W, Huang S C, Li S G. 2017. Massindependent and mass‐dependent Ca Isotopic compositions of thirteen geological reference materials measured by thermal Ionisation mass spectrometry. Geostandards and Geoanalytical Research, 41 (2): 283–302.

    Google Scholar 

  • Herzberg C. 2004. Partial crystallization of Mid-Ocean Ridge Basalts in the crust and mantle. Journal of Petrology, 45 (12): 2 389–2 405.

    Google Scholar 

  • Heuser A, Eisenhauer A, Gussone N, Bock B, Hansen B T, Nägler T F. 2002. Measurement of calcium isotopes (δ 44 Ca) using a multicollector TIMS technique. International Journal of Mass Spectrometry, 220 (3): 385–397.

    Google Scholar 

  • Huang F, Zhou C, Wang W Z, Kang J T, Wu Z Q. 2019. Firstprinciples calculations of equilibrium Ca isotope fractionation: implications for oldhamite formation and evolution of lunar magma ocean. Earth and Planetary Science Letters, 510: 153–160.

    Google Scholar 

  • Huang S C, Farkaš J, Jacobsen S B. 2010. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth and Planetary Science Letters, 292 (3-4): 337–344.

    Google Scholar 

  • Huang S C, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochimica et Cosmochimica Acta, 75 (17): 4 987–4 997.

    Google Scholar 

  • Huang S C, Jacobsen S B. 2017. Calcium isotopic compositions of chondrites. Geochimica et Cosmochimica Acta, 201: 364–376.

    Google Scholar 

  • Ionov D A, Qi Y H, Kang J T, Golovin A V, Oleinikov O B, Zheng W, Anbar A D, Zhang Z F, Huang F. 2019. Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochimica et Cosmochimica Acta, 248: 1–13.

    Google Scholar 

  • Jaques A L, Green D H. 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 73 (3): 287–310.

    Google Scholar 

  • John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geoscience, 5 (7): 489–492.

    Google Scholar 

  • Kang J T, Ionov D A, Liu F, Zhang C L, Golovin A V, Qin L P, Zhang Z F, Huang F. 2017. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth and Planetary Science Letters, 474: 128–137.

    Google Scholar 

  • Kang J T, Ionov D A, Zhu H L, Liu F, Zhang Z F, Liu Z, Huang F. 2019. Calcium isotope sources and fractionation during melt-rock interaction in the lithospheric mantle: evidence from pyroxenites, wehrlites, and eclogites. Chemical Geology, 524: 272–282.

    Google Scholar 

  • Kang J T, Zhu H L, Liu Y F, Liu F, Wu F, Hao Y T, Zhi X C, Zhang Z F, Huang F. 2016. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China. Geochimica et Cosmochimica Acta, 174: 335–344.

    Google Scholar 

  • Li M, Lei Y, Feng L P, Wang Z C, Belshaw N S, Hu Z C, Liu Y S, Zhou L, Chen H H, Chai X N. 2018. High-precision Ca isotopic measurement using a large geometry high resolution MC-ICP-MS with a dummy bucket. Journal of Analytical Atomic Spectrometry, 33 (10): 1 707–1 719.

    Google Scholar 

  • Liu F, Li X, An Y J, Li J, Zhang Z F. 2019. Calcium isotope ratio (δ 44/40 Ca) measurements of Ca-dominated minerals and rocks without column chemistry using the double-spike technique and thermal ionisation mass spectrometry. Geostandards and Geoanalytical Research, 43 (3): 509–517.

    Google Scholar 

  • Liu F, Li X, Wang G Q, Liu Y F, Zhu H L, Kang J T, Huang F, Sun W D, Xia X P, Zhang Z F. 2017a. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: evidence from magnesium and calcium isotopes. Journal of Geophysical Research: Solid Earth, 122: 9 729–9 744.

    Google Scholar 

  • Liu F, Zhang Z F, Li X, An Y J. 2020. A practical guide to the double-spike technique for calcium isotope measurements by Thermal Ionization Mass Spectrometry (TIMS). International Journal of Mass Spectrometry, 450: 116307.

    Google Scholar 

  • Liu F, Zhu H L, Li X, Wang G Q, Zhang Z F. 2017b. Calcium isotopic fractionation and compositions of geochemical reference materials. Geostandards and Geoanalytical Research, 41 (4): 675–688.

    Google Scholar 

  • Lu W N, He Y S, Wang Y, Ke S. 2019. Behavior of calcium isotopes during continental subduction recorded in metabasaltic rocks. Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2019.09.027.

    Google Scholar 

  • Lundstrom C C, Sampson D E, Perfit M R, Gill J, Williams Q. 1999. Insights into mid-ocean ridge basalt petrogenesis: u‐series disequilibria from the Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. Journal of Geophysical Research, 104 (B3): 13 035–13 048.

    Google Scholar 

  • Ma J L, Wei G J, Liu Y, Ren Z Y, Xu Y G, Yang Y H. 2013. Precise measurement of stable neodymium isotopes of geological materials by using MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 28 (12): 1 926–1 931.

    Google Scholar 

  • Magna T, Gussone N, Mezger K. 2015. The calcium isotope systematics of Mars. Earth and Planetary Science Letters, 430: 86–94.

    Google Scholar 

  • Nauret F, Abouchami W, Galer S J G, Hofmann A W, Hémond C, Chauvel C, Dyment J. 2006. Correlated trace element-Pb isotope enrichments in Indian MORB along 18-20°S, Central Indian Ridge. Earth and Planetary Science Letters, 245 (1-2): 137–152.

    Google Scholar 

  • Niu Y L. 1997. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. Journal of Petrology, 38 (8): 1 047–1 074.

    Google Scholar 

  • Perfit M R, Fornari D J, Malahoff A, Embley R W. 1983. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 3. Trace element abundances and petrogenesis. Journal of Geophysical Research: Solid Earth, 88 (B12): 10 551–10 572.

    Google Scholar 

  • Price R C, Kennedy A K, Riggs- Sneeringer M, Frey F A. 1986. Geochemistry of basalts from the Indian Ocean triple junction: implications for the generation and evolution of Indian Ocean ridge basalts. Earth and Planetary Science Letters, 78 (4): 379–396.

    Google Scholar 

  • Qi Y H, Liu X H, Kang J T, He L X. 2017. First-principles investigations of equilibrium Ca, Mg, Si and O isotope fractionations between silicate melts and minerals. In: Proceedings of AGU Fall Meeting Abstracts. American Geophysical Union, New Orleans.

    Google Scholar 

  • Raczek I, Jochum K P, Hofmann A W. 2003. Neodymium and strontium isotope data for USGS reference materials BCR‐1, BCR‐2, BHVO‐1, BHVO‐2, AGV‐1, AGV‐2, GSP‐1, GSP‐2 and eight MPI‐DING reference glasses. Geostandards Newsletter, 27 (2): 173–179.

    Google Scholar 

  • Richter F M, Dauphas N, Teng F Z. 2009. Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chemical Geology, 258 (1-2): 92–103.

    Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5 (5): Q05B07.

    Google Scholar 

  • Simon J I, DePaolo D J. 2010. Stable calcium isotopic composition of meteorites and rocky planets. Earth and Planetary Science Letters, 289 (3-4): 457–466.

    Google Scholar 

  • Skulan J, DePaolo D J, Owens T L. 1997. Biological control of calcium isotopic abundances in the global calcium cycle. Geochimica et Cosmochimica Acta, 61 (12): 2 505–2 510.

    Google Scholar 

  • Smith M C, Perfit M R, Jonasson I R. 1994. Petrology and geochemistry of basalts from the southern Juan de Fuca Ridge: controls on the spatial and temporal evolution of mid‐ocean ridge basalt. Journal of Geophysical Research: Solid Earth, 99 (3): 4 787–4 812.

    Google Scholar 

  • Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316 (5823): 412–417.

    Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42 (1): 313–345.

    Google Scholar 

  • Sun W, Bennett V C, Eggins S M, Arculus R J, Perfit M R. 2003. Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results. Chemical Geology, 196 (1-4): 259–281.

    Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168 (3-4): 279–281.

    Google Scholar 

  • Thirlwall M F. 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chemical Geology: Isotope Geoscience section, 94 (2): 85–104.

    Google Scholar 

  • Urey H C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 562: 562–581.

    Google Scholar 

  • Valdes M C, Debaille V, Berger J, Armytage R M G. 2019. The effects of high-temperature fractional crystallization on calcium isotopic composition. Chemical Geology, 509: 77–91.

    Google Scholar 

  • Valdes M C, Moreira M, Foriel J, Moynier F. 2014. The nature of Earth’s building blocks as revealed by calcium isotopes. Earth and Planetary Science Letters, 394: 135–145.

    Google Scholar 

  • Verma S P. 1992. Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of Mid-Ocean Ridge Basalt. Geochemical Journal, 26 (3): 159–177.

    Google Scholar 

  • Wang W Z, Zhou C, Qin T, Kang J T, Huang S C, Wu Z Q, Huang F. 2017. Effect of Ca content on equilibrium Ca isotope fractionation between orthopyroxene and clinopyroxene. Geochimica et Cosmochimica Acta, 219: 44–56.

    Google Scholar 

  • Wang Y, He Y S, Wu H J, Zhu C W, Huang S C, Huang J. 2019. Calcium isotope fractionation during crustal melting and magma differentiation: granitoid and mineral-pair perspectives. Geochimica et Cosmochimica Acta, 259: 37–52.

    Google Scholar 

  • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231 (1-2): 53–72.

    Google Scholar 

  • Wu W, Xu Y G, Zhang Z F, Li X. 2020. Calcium isotopic composition of the lunar crust, mantle, and bulk silicate Moon: a preliminary study. Geochimica et Cosmochimica Acta, 270: 313–324.

    Google Scholar 

  • Zhang H M, Wang Y, He Y S, Teng F Z, Jacobsen S B, Helz R T, Marsh B D, Huang S C. 2018. No measurable calcium isotopic fractionation during crystallization of Kilauea Iki lava lake. Geochemistry, Geophysics, Geosystems, 19 (9): 3 128–3 139.

    Google Scholar 

  • Zhao X M, Zhang Z F, Huang S C, Liu Y F, Li X, Zhang H F. 2017. Coupled extremely light Ca and Fe isotopes in peridotites. Geochimica et Cosmochimica Acta, 208: 368–380.

    Google Scholar 

  • Zhu H L, Du L, Li X, Zhang Z F, Sun W D. 2020a. Calcium isotopic fractionation during plate subduction: constraints from back-arc basin basalts. Geochimica et Cosmochimica Acta, 270: 379–393.

    Google Scholar 

  • Zhu H L, Liu F, Li X, An Y J, Nan X Y, Du L, Huang F, Sun W D, Zhang Z F. 2020b. Significant δ 44/40 Ca variations between carbonate- and clay-rich marine sediments from the Lesser Antilles forearc and implications for mantle heterogeneity. Geochimica et Cosmochimica Acta, 276: 239–257.

    Google Scholar 

  • Zhu H L, Liu F, Li X, An Y J, Wang G Q, Zhang Z F. 2018a. A “peak cut” procedure of column separation for calcium isotope measurement using the double spike technique and Thermal Ionization Mass Spectrometry (TIMS). Journal of Analytical Atomic Spectrometry, 33 (4): 547–554.

    Google Scholar 

  • Zhu H L, Liu F, Li X, Wang G Q, Zhang Z F, Sun W D. 2018b. Calcium isotopic compositions of normal Mid-Ocean Ridge Basalts from the southern Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 123 (2): 1 303–1 313.

    Google Scholar 

  • Zhu H L, Zhang Z F, Wang G Q, Liu Y F, Liu F, Li X, Sun W D. 2016. Calcium isotopic fractionation during ionexchange column chemistry and Thermal Ionisation Mass Spectrometry (TIMS) determination. Geostandards and Geoanalytical Research, 40 (2): 185–194.

    Google Scholar 

Download references

Acknowledgment

We are extremely grateful to LIU Fang, KANG Jinting, and LIU Yufei for help in sample analysis and discussion. We are also grateful to the editors and the anonymous reviewers, whose constructive suggestions greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Du.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41773009, 41873002), the Stake Key Laboratory of Geological Processes and Mineral Resources (No. GPMR201708), the National Science Foundation for Post-doctoral Scientists of China (No. 2018M640660), the Taishan Scholar Program of Shandong (No. TS201712075), and the AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2017ASTCP-OS07)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Du, L., Zhang, Z. et al. Calcium isotopic signatures of depleted mid-ocean ridge basalts from the northeastern Pacific. J. Ocean. Limnol. 38, 1476–1487 (2020). https://doi.org/10.1007/s00343-020-0045-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0045-2

Keywords

Navigation