Skip to main content

Advertisement

Log in

Gametogenesis and reproductive traits of the cold-seep mussel Gigantidas platifrons in the South China Sea

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Gigantidas platifrons (Bivalvia, Mytilidae), the dominant species at the Formosa cold seep, relies on methanotrophic symbionts dwelling in its gills for nutrition. The reproductive patterns of G. platifrons provide fundamental information for understanding the population recruitment of this species. However, we know very little about important processes in reproduction, such as gametogenesis and symbiotic bacteria transmission. To this end, we described the developmental patterns of the gonads from nine surveys and juvenile length-distribution from one-year larval traps and detected bacteria in gonad from G. platifrons samples. Our results show that G. platifrons is a functionally dioecious species. The reproduction of G. platifrons is discontinuous, with spawning maturity peak around the fourth quarter of the year. The seasonal reproduction of G. platifrons was further supported by the unimodal shell length distribution of the trapped juvenile mussels. Given the small oocyte size (48.99–70.14 μm), which was comparable to that of coastal mussels, we proposed that G. platifrons developed via a free-living, planktotrophic larval stage before settlement. The blooms at the water surface can also supply the development of the planktonic larvae of G. platifrons. Meanwhile, no bacteria were observed in gonads, suggesting a horizontal symbiont transfer mode in this mussel. Collectively, these results provide fundamental biological information for an improved understanding of the early life history of G. platifrons in the Formosa cold seep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Arellano S M, Van Gaest A L, Johnson S B, Vrijenhoek R C, Young C M. 2014. Larvae from deep-sea methane seeps disperse in surface waters. Proceedings of the Royal Society B: Biological Sciences, 281(1786): 20133276.

    Google Scholar 

  • Arellano S M, Young C M. 2009. Spawning, development, and the duration of larval life in a deep-sea cold-seep mussel. The Biological Bulletin, 216(2): 149–162.

    Google Scholar 

  • Barry J P, Buck K R, Kochevar R K, Nelson D C, Fujiwara Y, Goffredi S K, Hashimoto J. 2002. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invertebrate Biology, 121(1): 47–54.

    Google Scholar 

  • Bayne B L. 1976. The biology of mussel larvae. In: Bayne B L ed. Marine Mussels: Their Ecology and Physiology. Cambridge University Press, Cambridge. p.81–120.

    Google Scholar 

  • Bayrakci G, Scalabrin C, Dupré S, Leblond I, Tary J B, Lanteri N, Augustin J M, Berger L, Cros E, Ogor A, Tsabaris C, Lescanne M, Géli L. 2014. Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara. Marine Geophysical Research, 35(3): 211–229.

    Google Scholar 

  • Berg C J. 1985. Reproductive strategies of mollusks from abyssal hydrothermal vent communities. Bulletin of the Biological Society of Washington, 6: 185–197.

    Google Scholar 

  • Borcherding J. 1991. The annual reproductive cycle of the freshwater mussel Dreissena polymorpha Pallas in lakes. Oecologia, 87(2): 208–218.

    Google Scholar 

  • Brown R A. 1984. Geographical variations in the reproduction of the horse mussel, Modiolus modiolus (Mollusca: Bivalvia). Journal of the Marine Biological Association of the United Kingdom, 64(4): 751–770.

    Google Scholar 

  • Campbell S A. 1970. The carotenoid pigments of Mytilus edulis and Mytilus californianus. Comparative Biochemistry and Physiology, 32(1): 97–115.

    Google Scholar 

  • Chen H, Wang M X, Zhang H, Wang H, Lv Z, Zhou L, Zhong Z S, Lian C, Cao L, Li C L. 2019. An LRR-domain containing protein identified in Bathymodiolus platifrons serves as intracellular recognition receptor for the endosymbiotic methane-oxidation bacteria. Fish & Shellfish Immunology, 93: 354–360.

    Google Scholar 

  • Colaço A, Martins I, Laranjo M, Pires L, Leal C, Prieto C, Costa V, Lopes H, Rosa D, Dando P R, Serrão-Santos R. 2006. Annual spawning of the hydrothermal vent mussel, Bathymodiolus azoricus, under controlled aquarium, conditions at atmospheric pressure. Journal of Experimental Marine Biology and Ecology, 333(2): 166–171.

    Google Scholar 

  • Comtet T, Desbruyères D. 1998. Population structure and recruitment in mytilid bivalves from the Lucky Strike and Menez Gwen hydrothermal vent fields (37°17′N and 37°50′N on the Mid-Atlantic Ridge). Marine Ecology Progress Series, 163: 165–177.

    Google Scholar 

  • Corliss J B, Dymond J, Gordon L I, Edmond J M, von Herzen R P, Ballard R D, Green K, Williams D, Bainbridge A, Crane K, van Andel T H. 1979. Submarine thermal springs on the Galapagos Rift. Science, 203(4385): 1 073–1 083.

    Google Scholar 

  • Distel D L, Baco A R, Chuang E, Morrill W, Cavanaugh C, Smith C R. 2000. Do mussels take wooden steps to deep-sea vents? Nature, 403(6711): 725–726.

    Google Scholar 

  • Dixon D R, Lowe D M, Miller P I, Villemin G R, Colaçco A, Serrao-Santos R, Dixon L R J. 2006. Evidence of seasonal reproduction in the Atlantic vent mussel Bathymodiolus azoricus, and an apparent link with the timing of photosynthetic primary production. Journal of the Marine Biological Association of the United Kingdom, 86(6): 1 363–1 371.

    Google Scholar 

  • Du Z F, Zhang X, Luan Z D, Wang M X, Xi S C, Li L F, Wang B, Cao L, Lian C, Li C L, Yan J. 2018. In situ raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(7): 2 049–2 061.

    Google Scholar 

  • Dubilier N, Windoffer R, Giere O. 1998. Ultrastructure and stable carbon isotope composition of the hydrothermal vent mussels Bathymodiolus brevior and B. sp. affinis brevior from the North Fiji Basin, western Pacific. Marine Ecology Progress Series, 165: 187–193.

    Google Scholar 

  • Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness Z P, DeChaine E, Cavanaugh C M, Dubilier N. 2006. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environmental Microbiology, 8(8): 1 441–1 447.

    Google Scholar 

  • Eckelbarger K J, Watling L. 1995. Role of phylogenetic constraints in determining reproductive patterns in deep-sea invertebrates. Invertebrate Biology, 114(3): 256–269.

    Google Scholar 

  • Feng D, Chen D F. 2015. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 74–83.

    Google Scholar 

  • Fisher C R, Brooks J M, Vodenichar J S, Zande J M, Childress J J, Burke Jr R A. 1993. The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Marine Ecology, 14(4): 277–289.

    Google Scholar 

  • Gaudron S M, Demoyencourt E, Duperron S. 2012. Reproductive traits of the cold-seep symbiotic mussel Idas modiolaeformis: gametogenesis and larval biology. The Biological Bulletin, 222(1): 6–16.

    Google Scholar 

  • Guo X Y, Li C L. 2017. Biochemical components of cold seep mussel Bathymodiolus platifrons from South China Sea and comparison with hydrothermal vent and offshore mussels. Marine Sciences, 41(6): 65–71. (in Chinese with English abstract)

    Google Scholar 

  • Hashimoto J, Okutani T. 1994. Four new mytilid mussels associated with deep sea chemosynthetic communities around Japan. Venus, 53(2): 61–83.

    Google Scholar 

  • Hessler R R, Smithey W M, Boudrias M A, Keller C H, Lutz R A, Childress J J. 1988. Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). Deep Sea Research Part A. Oceanographic Research Papers, 35(10–11): 1 681–1 709.

    Google Scholar 

  • Jantz B, Neumann D. 1998. Growth and reproductive cycle of the zebra mussel in the River Rhine as studied in a river bypass. Oecologia, 114(2): 213–225

    Google Scholar 

  • Jiang Z Y, Wang Y S, Sun F L. 2014. Spatial structure of eukaryotic ultraplankton community in the northern South China Sea. Biologia, 69(5): 557–565.

    Google Scholar 

  • Jones W J, Won Y J, Maas PAY, Smith P J, Lutz R A, Vrijenhoek R C. 2006. Evolution of habitat use by deep-sea mussels. Marine Biology, 148(4): 841–851.

    Google Scholar 

  • Jørgensen C B. 1981. Mortality, growth, and grazing impact of a cohort of bivalve larvae, Mytilus edulis L. Ophelia, 20(2): 185–192.

    Google Scholar 

  • Kádár E, Bettencourt R, Costa V, Santos R S, Lobo-da-Cunha A, Dando P. 2005. Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. Journal of Experimental Marine Biology and Ecology, 318(1): 99–110.

    Google Scholar 

  • Kennicutt II M C, Brooks J M, Bidigare R R, Fay R R, Wade T L, McDonald T J. 1985. Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, 317(6035): 351–353.

    Google Scholar 

  • Khripounoff A, Alberic P. 1991. Settling of particles in a hydrothermal vent field (East Pacific Rise 13°N) measured with sediment traps. Deep Sea Research Part A. Oceanographic Research Papers, 38(6): 729–744.

    Google Scholar 

  • Laming S R, Duperron S, Cunha M R, Gaudron S M. 2014. Settled, symbiotic, then sexually mature: adaptive developmental anatomy in the deep-sea, chemosymbiotic mussel Idas modiolaeformis. Marine Biology, 161(6): 1 319–1 333.

    Google Scholar 

  • Laming S R, Duperron S, Gaudron S M, Hilario A, Cunha M R. 2015. Adapted to change: the rapid development of symbiosis in newly settled, fast-maturing chemosymbiotic mussels in the deep sea. Marine Environmental Research, 112: 100–112.

    Google Scholar 

  • Laming S R, Gaudron S M, Duperron S. 2018. Lifecycle ecology of deep-sea chemosymbiotic mussels: a review. Frontiers in Marine Science, 5: 282.

    Google Scholar 

  • Le Pennec M, Beninger P G. 1997. Ultrastructural characteristics of spermatogenesis in three species of deep-sea hydrothermal vent mytilids. Canadian Journal of Zoology, 75(2): 308–316.

    Google Scholar 

  • Le Pennec M, Beninger P G. 2000. Reproductive characteristics and strategies of reducing-system bivalves. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 126(1): 1–16.

    Google Scholar 

  • Lee S Y. 1988. The reproductive cycle and sexuality of the green mussel Perna viridis (L.) (Bivalvia: Mytilacea) in Victoria Harbour, Hong Kong. Journal of Molluscan Studies, 54(3): 317–323.

    Google Scholar 

  • Levin L A, Baco A R, Bowden D A, Colaco A, Cordes E E, Cunha M R, Demopoulos A W J, Gobin J, Grupe B M, Le J, Metaxas A, Netburn A N, Rouse G W, Thurber A R, Tunnicliffe V, Van Dover C L, Vanreusel A, Watling L. 2016. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Frontiers in Marine Science, 3: 72.

    Google Scholar 

  • Lorion J, Duperron S, Gros O, Cruaud C, Samadi S. 2009. Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proceedings of the Royal Society B: Biological Sciences, 276(1654): 177–185.

    Google Scholar 

  • Lorion J, Kiel S, Faure B, Kawato M, Ho S Y W, Marshall B, Tsuchida S, Miyazaki J I, Fujiwara Y. 2013. Adaptive radiation of chemosymbiotic deep-sea mussels. Proceedings of the Royal Society B: Biological Sciences, 280(1770): 20131243.

    Google Scholar 

  • Lutz R A, Jablonski D, Rhoads D C, Turner R D. 1980. Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galápagos Rift. Marine Biology, 57(2): 127–133.

    Google Scholar 

  • Lutz R A, Kennish M J. 1993. Ecology of deep-sea hydrothermal vent communities: a review. Reviews of Geophysics, 31(3): 211–242.

    Google Scholar 

  • Maoka T. 2011. Carotenoids in marine animals. Marine Drugs, 9(2): 278–293.

    Google Scholar 

  • Mikhailov A T, Torrado M, Méndez J. 1995. Sexual differentiation of reproductive tissue in bivalve molluscs: identification of male associated polypeptide in the mantle of Mytilus galloprovincialis Lmk. International Journal of Developmental Biology, 39(3): 545–548.

    Google Scholar 

  • Miyazaki J I, Beppu S, Kajio S, Dobashi A, Kawato M, Fujiwara Y, Hirayama H. 2013. Dispersal ability and environmental adaptability of deep-sea mussels Bathymodiolus (Mytilidae: Bathymodiolinae). Open Journal of Marine Science, 3(1): 31–39.

    Google Scholar 

  • Miyazaki J I, de Oliveira Martins L, Fujita Y, Matsumoto H, Fujiwara Y. 2010. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS One, 5(4): e10363.

    Google Scholar 

  • Momma H, Mitsuzawa K, Kaiho Y, Iwase R, Fujiwara Y. 1995. Long-term deep sea floor observation off Hatsushima Island in Sagami Bay: one year in the Calyptogena soyoae clam colony. JAMSTEC Journal of Deep Sea Research, 11: 249–268.

    Google Scholar 

  • Myrand B, Guderley H, Himmelman J H. 2000. Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence. Marine Ecology Progress Series, 197: 193–207.

    Google Scholar 

  • Ndah A B, Dagar L, Becek K, Odihi J O. 2019. Spatio-temporal dynamics of phytoplankton functional groups in the South China Sea and their relative contributions to marine primary production. Regional Studies in Marine Science, 29: e100598.

    Google Scholar 

  • Newell R I, Hilbish T J, Koehn R K, Newell C J. 1982. Temporal variation in the reproductive cycle of Mytilus edulis L. (Bivalvia, Mytilidae) from localities on the east coast of the United States. The Biological Bulletin, 162(3): 299–310.

    Google Scholar 

  • Niu M Y, Liang Q Y, Feng D, Wang F P. 2017. Ecosystems of cold seeps in the South China Sea. In: Kallmeyer J ed. Life at Vents and Seeps. De Gruyter, Berlin, Boston. p.139–160.

    Google Scholar 

  • Ockelmann K W, Dinesen G E. 2010. Life on wood—the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia). Marine Biology Research, 7(1): 71–84.

    Google Scholar 

  • Philip B T, Denny A R, Solomon E A, Kelley D S. 2016. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon. Geochemistry, Geophysics, Geosystems, 17(3): 1 182–1 196.

    Google Scholar 

  • Picazo D R, Dagan T, Ansorge R, Petersen J M, Dubilier N, Kupczok A. 2019. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. The ISME Journal, 13(12): 2 954–2 968

    Google Scholar 

  • Pieters H, Kluytmans J H, Zandee D I, Cadée G C. 1980. Tissue composition and reproduction of Mytilus edulis in relation to food availability. Netherlands Journal of Sea Research, 14(3–4): 349–361.

    Google Scholar 

  • Rossi G S, Tunnicliffe V. 2017. Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel. Marine Ecology Progress Series, 574: 49–64.

    Google Scholar 

  • Salerno J L, Macko S A, Hallam S J, Bright M, Won Y J, McKiness Z, van Dover C L. 2005. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. The Biological Bulletin, 208(2): 145–155.

    Google Scholar 

  • Sayavedra L, Ansorge R, Rubin-Blum M, Leisch N, Dubilier N, Petersen J M. 2019. Horizontal acquisition followed by expansion and diversification of toxin-related genes in deep-sea bivalve symbionts. BioRxiv, 605386, https://doi.org/10.1101/605386

    Google Scholar 

  • Schweiggert R M, Carle R. 2016. Carotenoid production by bacteria, microalgae, and fungi. In: Kaczor A, Baranska M eds. Carotenoids: Nutrition, Analysis and Technology. Wiley, Washington. p.217–240.

    Google Scholar 

  • Seed R. 1969. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores: I. Breeding and settlement. Oecologia, 3(3): 277–316.

    Google Scholar 

  • Smith C R, Amy R B. 2003. Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology, 41: 311–354.

    Google Scholar 

  • Sun J, Zhang Y, Xu T, Zhang Y, Mu H W, Zhang Y J, Lan Y, Fields C J, Hui J H L, Zhang W P, Li R S, Nong W Y, Cheung F K M, Qiu J W, Qian P Y. 2017a. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nature Ecology & Evolution, 1(5): 0121.

    Google Scholar 

  • Sun Y, Wang M X, Li L L, Zhou L, Wang X C, Zheng P, Yu H Y, Li C L, Sun S. 2017b. Molecular identification of methane monooxygenase and quantitative analysis of methanotrophic endosymbionts under laboratory maintenance in Bathymodiolus platifrons from the South China Sea. PeerJ, 5(2): e3565.

    Google Scholar 

  • Takishita K, Takaki Y, Chikaraishi Y, Ikuta T, Ozawa G, Yoshida T, Ohkouchi N, Fujikura K. 2017. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea Bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biology and Evolution, 9(5): 1 148–1 160.

    Google Scholar 

  • Thubaut J, Puillandre N, Faure B, Cruaud C, Samadi S. 2013. The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae). Ecology and Evolution, 3(14): 4 748–4 766.

    Google Scholar 

  • Turner R D, Lutz R. 1984. Growth and distribution of mollusks at deep-sea vents and seeps. Oceanus, 27(3): 54–62.

    Google Scholar 

  • Tyler P A, Grant A, Pain S L, Gage J D. 1982. Is annual reproduction in deep-sea echinoderms a response to variability in their environment? Nature, 300(5894): 747–750.

    Google Scholar 

  • Tyler P A, Marsh L, Baco-Taylor A, Smith C R. 2009. Protandric hermaphroditism in the whale-fall bivalve mollusc Idas washingtonia. Deep Sea Research Part II: Topical Studies in Oceanography, 56(19–20): 1 689–1 699.

    Google Scholar 

  • Tyler P A, Young C M, Dolan E, Arellano S M, Brooke S D, Baker M. 2007. Gametogenic periodicity in the chemosynthetic cold-seep mussel “Bathymodiolus” childressi. Marine Biology, 150(5): 829–840.

    Google Scholar 

  • Tyler P A, Young C M. 1999. Reproduction and dispersal at vents and cold seeps. Journal of the Marine Biological Association of the United Kingdom, 79(2): 193–208.

    Google Scholar 

  • Van Dover C L, German C R, Speer K G, Parson L M, Vrijenhoek R C. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science, 295(5558): 1 253–1 257.

    Google Scholar 

  • Wang H, Zhang H, Wang M X, Chen H, Lian C, Li C L. 2019. Comparative transcriptomic analysis illuminates the host-symbiont interactions in the deep-sea mussel Bathymodiolus platifrons. Deep Sea Research Part I: Oceanographic Research Papers, 151: 103082.

    Google Scholar 

  • Wang X C. 2018. Nutritional Sources Analysis and the Heavy-Metal Enrichment of the Macrofauna from the Deep-Sea Chemotrophic Ecosystem. Institute of Oceanology, Chinese Academy of Sciences, Qingdao. p.28–34. (in Chinese with English abstract)

    Google Scholar 

  • Wang Y, Kang J H, Liang Q Y, He X B, Wang J J, Lin M. 2018. Characteristics of phytoplankton communities and their biomass variation in a gas hydrate drilling area in the northern South China Sea. Marine Pollution Bulletin, 133: 606–615.

    Google Scholar 

  • Won Y J, Hallam S J, O’Mullan G D, Pan I L, Buck K R, Vrijenhoek R C. 2003. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Applied and Environmental Microbiology, 69(11): 6 785–6 792.

    Google Scholar 

  • Xu T, Feng D, Tao J, Qiu J W. 2019. A new species of deep-sea mussel (Bivalvia: Mytilidae: Gigantidas ) from the South China Sea: morphology, phylogenetic position, and gill-associated microbes. Deep Sea Research Part I: Oceanographic Research Papers, 146: 79–90.

    Google Scholar 

  • Xu T, Sun J, Watanabe H K, Chen C, Nakamura M, Ji R B, Feng D, Lv J, Wang S, Bao Z M, Qian P Y, Qiu J W. 2018. Population genetic structure of the deep-sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) in the Northwest Pacific. Evolutionary Applications, 11(10): 1 915–1 930.

    Google Scholar 

  • Young C M, He R Y, Emlet R B, Li Y Z, Qian H, Arellano S M, Van Gaest A, Bennett K C, Wolf M, Smart T I, Rice M E. 2012. Dispersal of deep-sea larvae from the intra-American seas: simulations of trajectories using ocean models. Integrative and Comparative Biology, 52(4): 483–496.

    Google Scholar 

  • Yu J J, Wang M X, Liu B Z, Yue X, Li C L. 2019. Gill symbionts of the cold-seep mussel Bathymodiolus platifrons: composition, environmental dependency and immune control. Fish & Shellfish Immunology, 86: 246–252.

    Google Scholar 

  • Zhang X, Du Z F, Luan Z D, Wang X J, Xi S C, Wang B, Li L F, Lian C, Yan J. 2017. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea. Geochemistry, Geophysics, Geosystems, 18(10): 3 700–3 713.

    Google Scholar 

  • Zheng P, Wang M X, Li C L, Sun X Q, Wang X C, Sun Y, Sun S. 2017. Insights into deep-sea adaptations and host-symbiont interactions: a comparative transcriptome study on Bathymodiolus mussels and their coastal relatives. Molecular Ecology, 26(19): 5 133–5 148.

    Google Scholar 

  • Zhou L, Cao L, Wang X C, Wang M X, Wang H N, Zhong Z S, Xu Z, Chen H, Li L L, Li M N, Wang H, Zhang H, Lian C, Sun Y, Li C L. 2020. Metal adaptation strategies of deep-sea Bathymodiolus mussels from a cold seep and three hydrothermal vents in the West Pacific. Science of the Total Environment, 707: 136046.

    Google Scholar 

Download references

Acknowledgment

We thank all the crews on R/V Kexue, R/V Haiyang Shiyou 623, ROV Faxian 4500, and ROV Haixing 6000 for their assistance in sample collection and all the laboratory members for continuous technical advice and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolun Li.

Additional information

Supported by the Ministry of Science and Technology, the People’s Republic of China (No. 2018YFC0310802), the Chinese Academy of Sciences (Nos. NMST-KEXUE2017K01, KEXUE2019GZ02, KEXUE2018G16), the National Natural Science Foundation of China (No. 41576149), the Taishan Scholars Project to SUN Song, and the State Key Laboratory of Microbial Technology Open Projects Fund (No. M2019-07)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Wang, M., Chen, H. et al. Gametogenesis and reproductive traits of the cold-seep mussel Gigantidas platifrons in the South China Sea. J. Ocean. Limnol. 38, 1304–1318 (2020). https://doi.org/10.1007/s00343-020-0027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0027-4

Keyword

Profiles

  1. Zhaoshan Zhong
  2. Chaolun Li