Skip to main content

Advertisement

Log in

Sulcus and otolith outline analyses: complementary tools for stock discrimination in white croaker Pennahia argentata in northern Chinese coastal waters

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

This study analyzed and compared variations of the sulcus and otolith outlines of three geographic stocks (Huanghe (Yellow) River estuary (HHE), Jiaozhou Bay (JZB), and Changjiang (Yangtze) River estuary (CJE)) of white croaker Pennahia argentata in northern Chinese coastal waters. The sulcus and otolith outline analyses via elliptical Fourier transform (EFT, i.e. outline analysis) achieved an overall classification rate of 80.4% and 87.2%, respectively. Based on a combination of sulcus and otolith shape indices (SIs) and two derivative ratios, a moderate discriminatory efficiency of 64.7% was obtained. The results indicate that sulcus outline analysis could be used alone to discriminate white croaker stocks, and that both sulcus and otolith outline analyses discriminated the fish stocks at a higher classification rate than the shape indices. The sulcus outline analysis provided complementary information to the whole otolith outline analysis for stock discrimination. Both the sulcus and otolith outline analyses efficiently discriminated between the most geographically separated CJE and HHE stocks, indicating that they could be considered discrete stocks for fishery management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agüera A, Brophy D. 2011. Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research, 110(3): 465–471, https://doi.org/10.1016/j.fishres.2011.06.003.

    Google Scholar 

  • Arellano R V, Hamerlynck O, Vincx M, Mees J, Hostens K, Gijselinck W. 1995. Changes in the ratio of the sulcus acusticus area to the sagitta area of Pomatoschistus minutus and P. lozanoi (Pisces, Gobiidae). Marine Biology, 122(3): 355–360, https://doi.org/10.1007/BF00350868.

    Google Scholar 

  • Avigliano E, Comte G, Rosso J J, Mabragaña E, Rosa P D, Sanchez S, Volpedo A, del Rosso F, Schenone N F. 2015. Identification of fish stocks of river crocker (Plagioscion ternetzi) in Paraná and Paraguay rivers by using otolith morphometric analysis. Latin American Journal of Aquatic Research, 43(3): 718–725, https://doi.org/10.3856/vol43-issue4-fulltext-10.

    Google Scholar 

  • Avigliano E, Jawad L A, Volpedo A V. 2016. Assessment of the morphometry of saccular otoliths as a tool to identify triplefin species (Tripterygiidae). Journal of the Marine Biological Association of the United Kingdom, 96(5): 1 167–1 180, https://doi.org/10.1017/s0025315415001101.

    Google Scholar 

  • Avigliano E, Martinez C F R, Volpedo A V. 2014. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fisheries Research, 149: 55–60, https://doi.org/10.1016/j.fishres.2013.09.013.

    Google Scholar 

  • Begg G A, Brown R W. 2000. Stock identification of haddock Melanogrammus aeglefinus on Georges Bank based on otolith shape analysis. Transactions of the American Fisheries Society, 129(4): 935–945, https://doi.org/10.1577/1548-8659(2000)129<0935:SIOHMA>2.3.CO;2.

    Google Scholar 

  • Berg F, Almeland O W, Skadal J, Slotte A, Andersson L, Folkvord A. 2018. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PLoS One, 13(1): e0190995, https://doi.org/10.1371/journal.pone.0190995.

    Google Scholar 

  • Burke N, Brophy D, King P A. 2008. Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES Journal of Marine Science, 65(9): 1 670–1 675, https://doi.org/10.1093/icesjms/fsn177.

    Google Scholar 

  • Cadrin S X, Friedland K D. 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research, 43(1–3): 129–139, https://doi.org/10.1016/S0165-7836(99)00070-3.

    Google Scholar 

  • Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50(5): 1 062–1 083, https://doi.org/10.1139/f93-123.

    Google Scholar 

  • Campana S E, Neilson J D. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5): 1 014–1 032, https://doi.org/10.1139/f85-127.

    Google Scholar 

  • Cañás L, Stransky C, Schlickeisen J, Sampedro M P, Fariña A C. 2012. Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES Journal of Marine Science, 69(2): 250–256, https://doi.org/10.1093/icesjms/fss006.

    Google Scholar 

  • Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61(2): 158–167, https://doi.org/10.1139/f03-151.

    Google Scholar 

  • Castonguay M, Simard P, Gagnon P. 1991. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Canadian Journal of Fisheries and Aquatic Sciences, 48(2): 296–302, https://doi.org/10.1139/f91-041.

    Google Scholar 

  • Chen D G. 1991. Fisheries Ecology of the Bohai Sea and the Yellow Sea. China Ocean Press, Beijing, 505p. (in Chinese)

    Google Scholar 

  • Chen J J, Xu Z L. 2011. Spatial-temporal pattern to fishing ground of white croaker in Bohai, Yellow and East China Seas. Journal of Natural Resources, 26(4): 666–673, https://doi.org/10.11849/zrzyxb.2011.04.012. (in Chinese with English abstract)

    Google Scholar 

  • Chen J S. 2006. Theories of River Water Quality and Water Quality of Chinese Rivers. Science Press, Beijing, 292p. (in Chinese)

    Google Scholar 

  • Crampton J S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia, 28(2): 179–186, https://doi.org/10.1111/j.1502-3931.1995.tb01611.x.

    Google Scholar 

  • de Carvalho B M, Vaz-dos-Santos A M, Spach H L, Volpedo A V. 2015. Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary. Scientia Marina, 79(4): 409–418, https://doi.org/10.3989/scimar.04218.31A.

    Google Scholar 

  • Ferguson G J, Ward T M, Gillanders B M. 2011. Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research, 110(1): 75–83, https://doi.org/10.1016/j,fishres.2011.03.014.

    Google Scholar 

  • Gauldie R W. 1988. Function, form and time-keeping properties of fish otoliths. Comparative Biochemistry and Physiology Part A: Physiology, 91(2): 395–402, https://doi.org/10.1016/0300-9629(88)90436-7.

    Google Scholar 

  • Han Z Q, Gao T X, Yanagimoto T, Sakurai Y. 2008. Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in Northwestern Pacific. Fisheries Science, 74(4): 770–780, https://doi.org/10.1111/j.1444-2906.2008.01588.x.

    Google Scholar 

  • Jaramillo A M, Tombari A D, Durá V B, Rodrigo M E, Volpedo A V. 2014. Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas, 30(1): 57–66.

    Google Scholar 

  • Ju P L, Yang L, Lu Z B, Yang S Y, Du J G, Zhong H Q, Chen J, Xiao J M, Chen M R, Zhang C Y. 2016. Age, growth, mortality and population structure of silver croaker Pennahia argentata (Houttuyn, 1782) and red bigeye Priacanthus macracanthus Cuvier, 1829 in the north-central Taiwan Strait. Journal of Applied Ichthyology, 32(4): 652–660, https://doi.org/10.1111/jai.13053.

    Google Scholar 

  • Kuhl F P, Giardina C R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18(3): 236–258, https://doi.org/10.1016/0146-664X(82)90034-X.

    Google Scholar 

  • Li X Z, Liu L S, Li B Q. 2010. Macrobenthos in China Sea: Research and Practice. China Ocean Press, Beijing, 378p. (in Chinese)

    Google Scholar 

  • Libungan L A, Pálsson S. 2015. ShapeR: an R package to study otolith shape variation among fish populations. PLoS One, 10(3): e0121102, https://doi.org/10.1371/journal.pone.0121102.

    Google Scholar 

  • Lin L S, Cheng J H, Ling J Z, Zhang H Y. 2006. First capture sizes of major commercial fishes in the East China Sea Region. Journal of Fishery Sciences of China, 13(2): 250–256. https://doi.org/10.3321/j.issn:1005-8737.2006.02.014. (in hinese with English abstract)

    Google Scholar 

  • Lohmann G P, Schweitzer P N. 1990. On eigenshape analysis. In: Rohlf F J, Bookstein F L eds. Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology, Ann Arbor, Michigan. p.147–166.

    Google Scholar 

  • Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes, 37(3): 297–306, https://doi.org/10.1007/BF00004637.

    Google Scholar 

  • Lombarte A, Morales-Nin B. 1995. Morphology and ultrastructure of saccular otoliths from five species of the genus Coelorinchus (Gadiformes: Macrouridae) from the Southeast Atlantic. Journal of Morphology, 225(2): 179–192, https://doi.org/10.1002/jmor.1052250204.

    Google Scholar 

  • Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environmental Biology of Fishes, 33(4): 405–410, https://doi.org/10.1007/BF00010955.

    Google Scholar 

  • Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S. 2010. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes, 89(3–4): 591–605, https://doi.org/10.1007/s10641-010-9674-1.

    Google Scholar 

  • Montanini S, Stagioni M, Valdré G, Tommasini S, Vallisneri M. 2015. Intra-specific and inter-specific variability of the sulcus acusticus of sagittal otoliths in two gurnard species (Scorpaeniformes, Triglidae). Fisheries Research, 161: 93–101, https://doi.org/10.1016/j.fishres.2014.07.003.

    Google Scholar 

  • Naya M J G, Tombari A, Volpedo A, Gómez S E. 2012. Size related changes in sagitta otoliths of Australoheros facetus (Pisces; Cichlidae) from South America. Journal of Applied Ichthyology, 28(5): 752–755, https://doi.org/10.1111/j.1439-0426.2012.02006.x.

    Google Scholar 

  • Petursdottir G, Begg G A, Marteinsdottir G. 2006. Discrimination between Icelandic cod (Gadus morhua L.) populations from adjacent spawning areas based on otolith growth and shape. Fisheries Research, 80(2–3): 182–189, https://doi.org/10.1016/j.fishres.2006.05.002.

    Google Scholar 

  • Popper A N, Ramcharitar J, Campana S E. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research, 56(5): 497–504, https://doi.org/10.1071/MF04267.

    Google Scholar 

  • Stransky C, Murta A G, Schlickeisen J, Zimmermann C. 2008. Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fisheries Research, 89(2): 159–166, https://doi.org/10.1016/j.fishres.2007.09.017.

    Google Scholar 

  • Stransky C. 2014. Morphometric outlines. In: Cadrin S X, Kerr L A, Mariani S eds. Stock Identification Methods: Applications in Fishery Science. 2nd edn. Academic Press, New York. p.129–140.

    Google Scholar 

  • Sun S, Sun X X. 2011. Atlas of Long-Term Changes in the Jiaozhou Bay Ecosystem. China Ocean Press, Beijing, 809p. (in Chinese)

    Google Scholar 

  • Torres G J, Lombarte A, Morales-Nin B. 2000a. Sagittal otolith size and shape variability to identify geographical intraspecific differences in three species of the genus Merluccius. Journal of the Marine Biological Association of the United Kingdom, 80(2): 333–342, https://doi.org/10.1017/S0025315499001915.

    Google Scholar 

  • Torres G J, Lombarte A, Morales-Nin B. 2000b. Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merlucciidae). Fisheries Research, 46(1–3): 5–13, https://doi.org/10.1016/S0165-7836(00)00128-4.

    Google Scholar 

  • Tsai K E. 2009. Study of the acoustic characters of eleven soniferous fish in the western coastal waters of Taiwan. National Sun Yat-sen University, Guangzhou. 68p. (in Chinese)

    Google Scholar 

  • Tuset V M, Lombarte A, Assis C A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72(S1): 7–198, https://doi.org/10.3989/scimar.2008.72s17.

    Google Scholar 

  • Tuset V M, Lombarte A, González J A, Pertusa J F, Lorente M J. 2003a. Comparative morphology of the sagittal otolith in Serranus spp. Journal of Fish Biology, 63(6): 1 491–1 504, https://doi.org/10.1111/j.1095-8649.2003.00262.x.

    Google Scholar 

  • Tuset V M, Lozano I J, González J A, Pertusa J F, García-Díaz M M. 2003b. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19(2): 88–93, https://doi.org/10.1046/j.1439-0426.2003.00344.x.

    Google Scholar 

  • Volpedo A, Echeverría D D. 2003. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research, 60(2–3): 551–560, https://doi.org/10.1016/S0165-7836(02)00170-4.

    Google Scholar 

  • Waessle J A, Lasta C A, Favero M. 2003. Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35-36°S). Scientia Marina, 67(2): 233–240, https://doi.org/10.3989/scimar.2003.67n2233.

    Google Scholar 

  • Zar J H. 2010. Biostatistical Analysis. 5th edn. Prentice Hall, New Jersey, 944p.

    Google Scholar 

Download references

Acknowledgment

We thank the people who contributed to the sample collection and Dr. ZHAO B. and Dr. YU X. for their help in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhu Liu.

Additional information

Data Availability Statement

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

Supported by the National Natural Science Foundation of China (NSFC) under the Programs Science Fund for Creative Research Groups (Nos. 40821004, 41121064)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Dou, S., Cao, L. et al. Sulcus and otolith outline analyses: complementary tools for stock discrimination in white croaker Pennahia argentata in northern Chinese coastal waters. J. Ocean. Limnol. 38, 1559–1571 (2020). https://doi.org/10.1007/s00343-020-0023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0023-8

Keywords

Navigation