Molecular identification and population differentiation of Aurelia spp. ephyrae in sea cucumber aquaculture ponds of northern China

Abstract

Aurelia spp. ephyrae have been reported to form blooms in sea cucumber aquaculture ponds in the Bohai and Yellow Seas. To identify the species, we carried out a genetic analysis of Aurelia spp. ephyrae and medusae based on mitochondrial 16S rRNA gene. Samples of four Aurelia sp. ephyrae populations were collected in sea cucumber aquaculture ponds and samples of four Aurelia sp. medusae populations were collected in coastal waters. Using a BLASTn search, we found that both the ephyrae collected in the aquaculture ponds and medusae collected in coastal waters belong to Aurelia coerulea. Seventeen haplotypes were recovered from the 16S rRNA gene. The overall haplotype diversity and nucleotide diversity of the 166 A. coerulea individuals were 0.686 and 0.329%, respectively, indicating high haplotype diversity and low nucleotide diversity. Moreover, the haplotype diversity of ephyrae populations were generally lower than that of medusae populations with close sampling points. The genetic differentiation between ephyrae populations collected in the sea cucumber aquaculture ponds and A. coerulea medusae collected in coastal waters was not significant, suggesting the ephyrae populations in the sea cucumber culture ponds were part of the same genetic group as the medusae populations in the coastal waters. Phylogeographic analysis of the 16S rRNA region revealed that there was no significant correlation between the haplotypes and the geographic distribution of populations. Pairwise fixation index values showed significant genetic differentiation and limited gene flow between A. coerulea population of Weifang and other locations.

This is a preview of subscription content, access via your institution.

References

  1. Arai M N. 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia, 451(1–3): 69–87, https://doi.org/10.1007/978-94-010-0722-1_7.

    Article  Google Scholar 

  2. Bandelt H J, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1): 37–48, https://doi.org/10.1093/oxfordjournals.molbev.a026036.

    Article  Google Scholar 

  3. Baxter E J, Rodger H D, McAllen R, Doyle T K. 2011. Gill disorders in marine-farmed salmon: investigating the role of hydrozoan jellyfish. Aquaculture Environment Interactions, 1(3): 245–257, https://doi.org/10.3354/aei00024.

    Article  Google Scholar 

  4. Bolton T F, Graham W M. 2006. Jellyfish on the rocks: Bioinvasion threat of the international trade in aquarium live rock. Biological Invasions, 8(4): 651–653, https://doi.org/10.1007/s10530-005-2017-z.

    Article  Google Scholar 

  5. Bosch-Belmar M, Rabet C M, Dhaouadi R, Chalghaf R, Yahia M N D, Fuentes V, Piraino S, Yahia O K D. 2016. Jellyfish stings trigger gill disorders and increased mortality in farmed Sparus aurata (Linnaeus, 1758) in the Mediterranean sea. PLoS One, 11(4): e0154239, https://doi.org/10.1371/journal.pone.0154239.

    Article  Google Scholar 

  6. Brown W M, George M Jr, Wilson A C. 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76(4): 1 967–1 971, https://doi.org/10.1073/pnas.76.4.1967.

    Article  Google Scholar 

  7. Chinese Zoology Editorial Committee, Chinese Academy of Sciences. 2002. Fauna Sinica (Volume 27): Scyphozoa, Hydrozoa. Science Press, Beijing. p.30–34. (in Chinese)

    Google Scholar 

  8. Dawson M N, Jacobs D K. 2001. Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). The Biological Bulletin, 200(1): 92–96, https://doi.org/10.2307/1543089.

    Article  Google Scholar 

  9. Dawson M N. 2003. Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Marine Biology, 143(2): 369–379, https://doi.org/10.1007/s00227-003-1070-3.

    Article  Google Scholar 

  10. Dawson M N. 2005. Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in south-eastern Australia. Invertebrate Systematics, 19(4): 361–370, https://doi.org/10.1071/IS03035.

    Article  Google Scholar 

  11. Dong Z J, Liu D Y, Keesing J K. 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin, 60(7): 954–963, https://doi.org/10.1016/j.marpolbul.2010.04.022.

    Article  Google Scholar 

  12. Dong Z J, Liu Z Y, Liu D Y. 2015. Genetic characterization of the scyphozoan jellyfish Aurelia spp. in Chinese coastal waters using mitochondrial markers. Biochemical Systematics and Ecology, 60: 15–23, https://doi.org/10.1016/j.bse.2015.02.018.

    Article  Google Scholar 

  13. Dong Z J, Sun T T, Liu Q Q, Sun F F. 2017. High density aggregations of the Aurelia sp.1 ephyrae in a Chinese coastal aquaculture pond. Aquatic Ecosystem Health & Management, 20(4): 465–471.

    Google Scholar 

  14. Ender A, Schierwater B. 2003. Placozoa are not derived cnidarians: evidence from molecular morphology. Molecular Biology and Evolution, 20(1): 130–134, https://doi.org/10.1093/molbev/msg018.

    Article  Google Scholar 

  15. Excoffier L, Lischer H E L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3): 564–567-https://doi.org/10.1111/j.1755-0998.2010.02847.x.

    Article  Google Scholar 

  16. Falkenhaug T. 2014. Review of jellyfish blooms in the Mediterranean and black Sea. Marine Biology Research, 10(10): 1 038–1 039, https://doi.org/10.1080/17451000.2014.880790.

    Article  Google Scholar 

  17. Hallerman E M. 2003. Population Genetics: Principles and Applications for Fisheries Scientists. American Fisheries Society, Bethesda. p.261–290.

    Google Scholar 

  18. He J, Zheng L M, Zhang W J, Lin Y S. 2015. Life cycle reversal in Aurelia sp.1 (Cnidaria, Scyphozoa). PLoS One, 10(12): e0145314, https://doi.org/10.1371/journal.pone.0145314.

    Article  Google Scholar 

  19. Ki J S, Hwang D S, Shin K, Yoon W D, Lim D, Kang Y S, Lee Y, Lee J S. 2008. Recent moon jelly (Aurelia sp.1) blooms in Korean coastal waters suggest global expansion: examples inferred from mitochondrial COI and nuclear ITS-5.8S rDNA sequences. ICES Journal of Marine Science, 65(3): 443–452, https://doi.org/10.1093/icesjms/fsn018.

    Article  Google Scholar 

  20. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1 870–1 874, https://doi.org/10.1093/molbev/msw054.

    Article  Google Scholar 

  21. Lee P L M, Dawson M N, Neill S P, Robins P E, Houghton J D R, Doyle T K, Hays G C. 2013. Identification of genetically and oceanographically distinct blooms of jellyfish. Journal of the Royal Society Interface, 10(80): 20120920, https://doi.org/10.1098/rsif.2012.0920.

    Article  Google Scholar 

  22. Li Y L, Wang B, Wang W B, Dong J. 2016. Genetic diversity analysis of jellyfish Rhopilema esculentum in Liaodong bay based on the COI sequence. Fisheries Science, 35(4): 404–409, https://doi.org/10.16378/j.cnki.1003-1111.2016.04.016. (in Chinese with English abstract)

    Google Scholar 

  23. Librado P, Rozas J. 2009. DnaSP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1 451–1 452, https://doi.org/10.1093/bioinformatics/btp187.

    Article  Google Scholar 

  24. Lucas C H. 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia, 451(1–3): 229–246, https://doi.org/10.1023/A:1011836326717.

    Article  Google Scholar 

  25. Mills C E. 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451(1–3): 55–68, https://doi.org/10.1023/A:1011888006302.

    Article  Google Scholar 

  26. Purcell J E. 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom, 85(3): 461–476, https://doi.org/10.1017/S0025315405011409.

    Article  Google Scholar 

  27. Purcell J E, Baxter E J, Fuentes V L. 2013. Jellyfish as products and problems of aquaculture. In: Allan G, Burnell G eds. Advances in Aquaculture Hatchery Technology. Cambridge: Woodhead Publishing: 404–430, https://doi.org/10.1533/9780857097460.2.404.

    Google Scholar 

  28. Ramšak A, Stopar K, Malej A. 2012. Comparative phylogeography of meroplanktonic species, Aurelia spp. and Rhizostomapulmo (Cnidaria: Scyphozoa) in European seas. Hydrobiologia, 690(1): 69–80, https://doi.org/10.1007/s10750-012-1053-9.

    Article  Google Scholar 

  29. Richardson A J, Bakun A, Hays G C, Gibbons M J. 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution, 24(6): 312–322, https://doi.org/10.1016/j.tree.2009.01.010.

    Article  Google Scholar 

  30. Schroth W, Jarms G, Streit B, Schierwater B. 2002. Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evolutionary Biology, 2: 1, https://doi.org/10.1186/1471-2148-2-1.

    Article  Google Scholar 

  31. Schroth W, Ender A, Schierwater B. 2005. Molecular biomarkers and adaptation to environmental stress in moon jelly (Aurelia spp.). Marine Biotechnology, 7(5): 449–461, https://doi.org/10.1007/s10126-004-4095-9.

    Article  Google Scholar 

  32. Scorrano S, Aglieri G, Boero F, Dawson M N, Piraino S. 2017. Unmasking Aurelia species in the Mediterranean Sea: an integrative morphometric and molecular approach. Zoological Journal of the Linnean Society, 180(2): 243–267, https://doi.org/10.1111/zoj.12494.

    Google Scholar 

  33. Stopar K, Ramšak A, Trontelj P, Malej A. 2010. Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Molecular Phylogenetics and Evolution, 57(1): 417–428, https://doi.org/10.1016/j.ympev.2010.07.004.

    Article  Google Scholar 

  34. Tajima F, Nei M. 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution, 1(3): 269–285.

    Google Scholar 

  35. Toyokawa M, Furota T, Terazaki M. 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biology and Ecology, 47(1): 48–58.

    Google Scholar 

  36. Uye S I. 2008. Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Res., 3(S1): 125–131, https://doi.org/10.3800/pbr.3.125.

    Article  Google Scholar 

  37. Uye S I. 2011. Human forcing of the copepod-fish-jellyfish triangular trophic relationship. Hydrobiologia, 666(1): 71–83, https://doi.org/10.1007/s10750-010-0208-9.

    Article  Google Scholar 

  38. Wang J Y, Yu Z G, Zhen Y, Mi T Z, Yao Q Z, Wang G S. 2012. Research advances in the effects of environmental factors on the growth and development of Aurelia spp. Chinese Journal of Applied Ecology, 23(11): 3 207–3 217, https://doi.org/10.13287/j.1001-9332.2012.0483. (in Chinese with English abstract)

    Google Scholar 

  39. Wang J Y, Zhen Y, Wang G S, Mi T Z, Yu Z G. 2013. Molecular identification and detection of moon jellyfish (Aurelia sp.) based on partial sequencing of mitochondrial 16S rDNA and COI. Chinese Journal of Applied Ecology, 24(3): 847–852, https://doi.org/10.13287/j.1001-9332.2013.0239. (in Chinese with English abstract)

    Google Scholar 

  40. Whitmore D H, Thai T H, Craft C M. 1994. The largemouth bass cytochrome b gene. J. Fish Biol., 44(4): 637–645, https://doi.org/10.1111/j.1095-8649.1994.tb01240.x.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhijun Dong.

Additional information

Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA23050301), the Special Exchange Program from the Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 41576152, 41876138), the Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20180047), and the Key Research and Development Program of Yantai (No. 2018ZHGY073)

6 Data Availability Statement

All data generated and/or analyzed during this study are available from the corresponding author upon request.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Liu, Q., Wang, L. et al. Molecular identification and population differentiation of Aurelia spp. ephyrae in sea cucumber aquaculture ponds of northern China. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0022-9

Download citation

Keyword

  • Aurelia coerulea
  • medusae
  • ephyrae
  • 16S rRNA gene analyzes
  • genetic differentiation
  • genetic variability