Skip to main content

Advertisement

Log in

Effects of hypoxia on survival, behavior, and metabolism of Zhikong scallop Chlamys farreri Jones et Preston 1904

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Hypoxia, a frequent occurring threat in coastal regions, often results in mass mortalities of marine organisms and brings a serious ecological problem. The commercially important Zhikong scallop Chlamys farreri is being under such a threat as the risks of eutrophication and hypoxia have risen in their culture areas. However, little information has been known concerning their tolerance to hypoxia and their strategy for survival. In the present study, a 20-day experiment was conducted to determine the effects of hypoxia on the survival, behavior, and metabolism of Zhikong scallop. With the LC50 for dissolved oxygen (DO) being estimated as 1.8 mg/L, the survival of Zhikong scallop can be greatly challenged even under the moderate hypoxic condition of around 2.0 mg/L DO. The survival rate ranged from 69% to 59% when DO dropped from 3.0 to 2.0 mg/L, and it was further reduced to 47% at 1.5 mg/L DO. In hypoxic conditions, the scallops became significantly active, which may be explained as escape attempts to avoid hypoxic water. To save energy, Zhikong scallop would depress their respiration. However, when DO dropped from 3.0 to 2.0 mg/L, the oxygen consumption rate hardly changed. The upregulation of lactate dehydrogenase activity and the unrepressed phosphofructokinase activity, which often result in the unbalanced cellular homeostasis and energy budget, may account for the observed increase in the mortality rate of Zhikong scallops. In general, Zhikong scallop is sensitive to hypoxia events, though possible escape attempts, depressed respiration, and oxaloacetate-pathway may increase their survival chance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aguirre-Velarde A, Jean F, Thouzeau G, Flye-Sainte-Marie J. 2018. Feeding behaviour and growth of the Peruvian scallop (Argopecten purpuratus) under daily cyclic hypoxia conditions. J. Sea Res., 131: 85–94.

    Article  Google Scholar 

  • Artigaud S, Lacroix C, Pichereau V, Flye-Sainte-Marie J. 2014. Respiratory response to combined heat and hypoxia in the marine bivalves Pecten maximus and Mytilus spp. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 175: 135–140.

    Article  Google Scholar 

  • Brand A R, Roberts D. 1973. The cardiac responses of the scallop Pecten maximus (L.) to respiratory stress. J. Exp. Mar. Biol. Ecol., 13(1): 29–43.

    Article  Google Scholar 

  • Breitburg D, Levin L A, Oschlies A, Grégoire M, Chavez F P, Conley D J, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto G S, Limburg K E, Montes I, Naqvi S W A, Pitcher G C, Rabalais N N, Roman M R, Rose K. A, Seibel B A, Telszewski M, Yasuhara M, Zhang J. 2018. Declining oxygen in the global ocean and coastal waters. Science, 359(6371): eaam7240.

    Article  Google Scholar 

  • Chen J H, Mai K S, Ma H M, Wang X J, Deng D, Liu X W, Xu W, Liufu Z G, Zhang W B, Tan B P, Ai Q H. 2007a. Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Jones et Preston). Fish Shellfish Immunol., 22(3): 272–281.

    Article  Google Scholar 

  • Chen M Y, Yang H S, Delaporte M, Zhao S J, Xing K. 2007c. Immune responses of the scallop Chlamys farreri after air exposure to different temperatures. J. Exp. Mar. Biol. Ecol., 345(1): 52–60.

    Article  Google Scholar 

  • Chen M Y, Yang H S, Delaporte M, Zhao S J. 2007b. Immune condition of Chlamys farreri in response to acute temperature challenge. Aquaculture, 271(1–4): 479–487.

    Article  Google Scholar 

  • Diaz R J, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891): 926–929.

    Article  Google Scholar 

  • Domenici P, Lefrançois C, Shingles A. 2007. Hypoxia and the antipredator behaviours of fishes. Philos. Trans. Roy. Soc. B: Biol. Sci., 362(1487): 2 105–2 121.

    Article  Google Scholar 

  • Finney D. 2009. Probit Analysis. Cambridge University Press, Cambridge, UK. 272p.

    Google Scholar 

  • Foss A, Evensen T H, Øiestad V. 2002. Effects of hypoxia and hyperoxia on growth and food conversion efficiency in the spotted wolffish Anarhichas minor (Olafsen). Aquacult. Res., 33(6): 437–444.

    Article  Google Scholar 

  • Gao J G, Gao X J, Hao Y H. 2002. Inhabition of albendazole and oxfendazole on the activity of fumaric reductase in Cysticercus cellulosae. Heilongjiang J. Anim. Sci. Vet. Med., (8): 8–9. (in Chinese with English abstract)

  • Gobler C J, Baumann H. 2016. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett., 12(5): 20150976.

    Article  Google Scholar 

  • Grieshaber M K, Hardewig I, Kreutzer U, Pörtner H O. 1993. Physiological and metabolic responses to hypoxia in invertebrates. In: Reviews of Physiology, Biochemistry and Pharmacology. Springer, Berlin, Heidelberg. p.43–147.

    Google Scholar 

  • Guo X M, Luo Y S. 2006. Scallop culture in China. Dev. Aquacult. Fish. Sci., 35: 1 143–1 161.

    Google Scholar 

  • Hagerman L, Uglow R F. 1985. Effects of hypoxia on the respiratory and circulatory regulation of Nephrops norvegicus. Mar. Biol.87(3): 273–278.

    Article  Google Scholar 

  • Howarth R, Chan F, Conley D J, Garnier J, Doney S C, Marino R, Billen G. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ., 9(1): 18–26.

    Article  Google Scholar 

  • Hughes G M, Sunders R L. 1970. Responses of the respiratory pumps to hypoxia in the rainbow trout (Salmo gairdneri). J. Exp. Biol., 53(3): 529–545.

    Google Scholar 

  • Ivanina A V, Nesmelova I, Leamy L, Sokolov E P, Sokolova I M. 2016. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J. Exp. Biol., 219(11): 1 659–1 674.

    Article  Google Scholar 

  • Joyce W, Ozolina K, Mauduit F, Ollivier H, Claireaux G, Shiels H A. 2016. Individual variation in whole-animal hypoxia tolerance is associated with cardiac hypoxia tolerance in a marine teleost. Biol Lett., 12(1): 20150708.

    Article  Google Scholar 

  • Kong H, Jiang X Y, Clements J C, Wang T, Huang X Z, Shang Y Y, Chen J F, Hu M H, Wang Y J. 2019. Transgenerational effects of short-term exposure to acidification and hypoxia on early developmental traits of the mussel Mytilus edulis. Mar. Environ. Res., 145: 73–80.

    Article  Google Scholar 

  • Larade K, Storey K B. 2002. A profile of the metabolic responses to anoxia in marine. Cell Mol. Response Stress, 3: 27–46.

    Article  Google Scholar 

  • Laudien J, Schiedek D, Brey T, Pörtner H O, Arntz W E. 2002. Survivorship of juvenile surf clams Donax serra (Bivalvia, Donacidae) exposed to severe hypoxia and hydrogen sulphide. J. Exp. Mar. Biol. Ecol., 271(1): 9–23.

    Article  Google Scholar 

  • Leverone J R. 1995. Diurnal dissolved oxygen in two Tampa Bay seagrass meadows: ramifications for the survival of adult bay scallops (Argopectin irradians concentricus). Fla. Sci., 58: 141–152.

    Google Scholar 

  • Livingstone D R, Stickle W B, Kapper M A, Wang S, Zurburg W. 1990. Further studies on the phylogenetic distribution of pyruvate oxidoreductase activities. Comp. Biochem. Physiol. Part B: Comp. Biochem., 97(4): 661–666.

    Article  Google Scholar 

  • Lombardi S A, Harlan N P, Paynter K T. 2013. Survival, acid—base balance, and gaping responses of the Asian oyster Crassostrea ariakensis and the eastern oyster Crassostrea virginica during clamped emersion and hypoxic immersion. J. Shellfish Res., 32(2): 409–416.

    Article  Google Scholar 

  • Long W C, Brylawski B J, Seitz R D. 2008. Behavioral effects of low dissolved oxygen on the bivalve Macoma balthica. J. Exp. Mar. Biol. Ecol., 359(1): 34–39.

    Article  Google Scholar 

  • McGladdery S E, Bower S M, Getchell R G. 2006. Diseases and parasites of scallops. Dev. Aquacult. Fish. Sci., 35: 595–650.

    Google Scholar 

  • Ripley J L, Foran C M. 2007. Influence of estuarine hypoxia on feeding and sound production by two sympatric pipefish species (Syngnathidae). Mar. Environ. Res., 63(4): 350–367.

    Article  Google Scholar 

  • Seibel B A. 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J. Exp. Biol., 214(2): 326–336.

    Article  Google Scholar 

  • Smolinski M B. 2016. Regulation of Pyruvate Kinase in Hypometabolic States. Carleton University, Ottawa, Ontario, Canada.

    Book  Google Scholar 

  • Sui Y M, Kong H, Shang Y Y, Huang X Z, Wu F L, Hu M H, Lin D H, Lu W Q, Wang Y J. 2016. Effects of short-term hypoxia and seawater acidification on hemocyte responses of the mussel Mytilus coruscus. Mar. Pollut. Bull., 108(1–2): 46–52.

    Article  Google Scholar 

  • Tang B J, Liu B Z, Wang X M, Yue X, Xiang J H. 2010. Physiological and immune responses of zhikong scallop Chlamys farreri to the acute viral necrobiotic virus infection. Fish Shellfish Immunol., 29(1): 42–48.

    Article  Google Scholar 

  • Vaquer-Sunyer R, Duarte C M. 2008. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA, 105(40): 15 452–15 457.

    Article  Google Scholar 

  • Wang M Q, Wang B J, Jiang K Y, Liu M, Shi X M, Wang L. 2018. A mitochondrial manganese superoxide dismutase involved in innate immunity is essential for the survival of Chlamys farreri. Fish Shellfish Immunol., 72: 282–290.

    Article  Google Scholar 

  • Wang Y J, Hu M H, Cheung S G, Shin P K S, Lu W Q, Li J L. 2013. Antipredatory responses of Perna viridis (Linnaeus, 1758) under acute hypoxia and low salinity. J. Molluscan Stud., 79(1): 42–50.

    Article  Google Scholar 

  • Wang Y J, Hu M H, Wong W H, Cheung S G, Shin P K S. 2011. Combined effects of dissolved oxygen and salinity on growth and body composition of juvenile green-lipped mussel Perna viridis. J. Shellfish Res., 30(3): 851–857.

    Article  Google Scholar 

  • Wu R S S, Lam P K S, Wan K L. 2002. Tolerance to, and avoidance of, hypoxia by the penaeid shrimp (Metapenaeus ensis). Environ. Pollut., 118(3): 351–355.

    Article  Google Scholar 

  • Xiao J, Ford S E, Yang H S, Zhang G F, Zhang F S, Guo X M. 2005. Studies on mass summer mortality of cultured zhikong scallops (Chlamys farreri Jones et Preston) in China. Aquaculture, 250(3–4): 602–615.

    Article  Google Scholar 

  • Yan T, Zhou M J, Fu M, Wang Y F, Yu R C, Li J. 2001. Inhibition of egg hatching success and larvae survival of the scallop, Chlamys farreri, associated with exposure to cells and cell fragments of the dinoflagellate Alexandrium tamarense. Toxicon, 39(8): 1 239–1 244.

    Article  Google Scholar 

  • Yang H S, Wang J, Zhou Y, Wang P, He Y C, Zhang F S. 2001. Impact of starvation on survival, meat condition and metabolism of Chlamys farreri. Chin. J. Oceanol. Limnol., 19(1): 51–56.

    Article  Google Scholar 

  • Yang S, Yang Q, Song X L, Liu S, Qu K M, Sun Y. 2018. A novel approach to evaluate potential risk of organic enrichment in marine aquaculture farms: a case study in Sanggou Bay. Environ. Sci. Pollut. Res., 25(17): 16 842–16 851.

    Article  Google Scholar 

  • Zhang F S, Yang H S. 1999. Analysis of the causes of mass mortality of farming Chlamys farreri in summer in coastal areas of Shandong, China. Mar. Sci., (1): 44–47. (in Chinese with English abstract)

  • Zhang Y, Wu H F, Wei L, Xie Z P, Guan B. 2017. Effects of hypoxia in the gills of the Manila clam Ruditapes philippinarum using NMR-based metabolomics. Mar. Pollut. Bull., 114: 84–89.

    Article  Google Scholar 

Download references

Acknowledgment

We thank DAI Li for providing the unicellular algae, and ZHOU Li for providing the instruments for enzyme-activity analysis. We are grateful for the assistance of YU Nan who helped us greatly in materials preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Sun.

Additional information

Supported by the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences (No. U1606404), the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDA19060201, XDA23050501), the National Key R&D Program of China (No. 2017YFC1404405), and the Taishan Scholars Project to SUN Song

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, F., Wang, M. et al. Effects of hypoxia on survival, behavior, and metabolism of Zhikong scallop Chlamys farreri Jones et Preston 1904. J. Ocean. Limnol. 38, 351–363 (2020). https://doi.org/10.1007/s00343-019-9074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9074-0

Keyword

Navigation