Skip to main content
Log in

bHLH genes polymorphisms and their association with growth traits in the Pacific oyster Crassostrea gigas

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors in the Pacific oyster (Crassostrea gigas), and play a very important role in regulation of growth and development. To investigate the oyster growth traits and the associations with bHLH genes variations, we analyzed the gene polymorphisms-traits association in a wild population, and confirmed the results in another independent wild population by targeted gene re-sequencing and SNPshot analysis. After screening the single nucleotide polymorphisms (SNPs) in three candidate genes of the bHLH family (88 bHLH genes in two wild oyster populations in total), we identified the allele CgLoblHLH4-T/G located in the exon of the CgLoblHLH4 gene. This allele is a non-synonymous mutation (Phe/Leu) with an extremely significant association with shell width (P<0.01) and allele G is beneficial to shell width. This SNP on the CgLoblHLH4 gene might have a potential value as a genetic marker of growth traits that could be used in breeding in C. gigas in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The whole-genome re-sequencing and transcriptome datasets are deposited in the Sequence Read Archive (SRA) database under the accession number PRJNA394055.

References

  • Atchley W R, Fitch W M. 1997. A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 94 (10): 5172–5176, https://doi.org/10.1073/pnas.94.10.5172.

    Article  Google Scholar 

  • Bao Y B, Xu F, Shimeld S M. 2017. Phylogenetics of lophotrochozoan bHLH genes and the evolution of lineage-specific gene duplicates. Genome Biology and Evolution, 9 (4): 869–886, https://doi.org/10.1093/gbe/evx047.

    Article  Google Scholar 

  • Cong R H, Kong L F, Yu H, Li Q. 2014. Association between polymorphism in the insulin receptor-related receptor gene and growth traits in the Pacific oyster Crassostrea gigas. Biochemical Systematics and Ecology, 54: 144–149, https://doi.org/10.1016/j.bse.2014.02.003.

    Article  Google Scholar 

  • Fournier-Level A, Korte A, Cooper M D, Nordborg M, Schmitt J, Wilczek A M. 2011. A map of local adaptation in Arabidopsis thaliana. Science, 334 (6052): 86–89, https://doi.org/10.1126/science.1209271.

    Article  Google Scholar 

  • Gaut B. 2012. Arabidopsis thaliana as a model for the genetics of local adaptation. Nature Genetics, 44 (2): 115–116, https://doi.org/10.1038/ng.1079.

    Article  Google Scholar 

  • Guo H H, Bao Z M, Li J Q, Lian S S, Wnag S, He Y, Fu X T, Zhang L L, Hu X L. 2012. Molecular characterization of TGF-β type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits. PLoS One, 7 (11): e51005, https://doi.org/10.1371/journal.pone.0051005.

    Article  Google Scholar 

  • Guo S X, Hu Y H, Ding Y S, Liu J M, Zhang M, Ma R L, Guo H, Wang K, He J, Yan Y Z, Rui D S, Sun F, Mu L T, Niu Q, Zhang J Y, Li S G. 2015. Association between eight functional polymorphisms and haplotypes in the cholesterol ester transfer protein (CETP) gene and dyslipidemia in national minority adults in the far west region of China. International Journal of Environmental Research and Public Health, 12 (12): 15979–15992, https://doi.org/10.3390/ijerph121215036.

    Article  Google Scholar 

  • Guo X M. 2009. Use and exchange of genetic resources in molluscan aquaculture. Reviews in Aquaculture, 1 (3-4): 251–259, https://doi.org/10.1111/j.1753-5131.2009.01014.x.

    Article  Google Scholar 

  • Huvet A, Jeffroy F, Fabioux C, Daniel J Y, Quillien V, Van Wormhoudt A, Moal J, Samain J F, Boudry P, Pouvreau S. 2008. Association among growth, food consumptionrelated traits and amylase gene polymorphism in the Pacific oyster Crassostrea gigas. Animal Genetics, 39 (6): 662–665, https://doi.org/10.1111/j.1365-2052.2008.01776.x.

    Article  Google Scholar 

  • Lai X S, Zhang C G, Wang J, Wang C, Lan X Y, Lei C Z, Chen H. 2013. Developmental expression patterns and association study with growth traits of bovine Bhlhe40 gene. Molecular Biology, 47 (5): 674–680, https://doi.org/10.1134/s0026893313050105.

    Article  Google Scholar 

  • Ledent V, Vervoort M. 2001. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Research, 11 (5): 754–770, https://doi.org/10.1101/gr.177001.

    Article  Google Scholar 

  • Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25 (14): 1754–1760, https://doi.org/10.1093/bioinformatics/btp324.

    Article  Google Scholar 

  • Li L, Li A, Song K, Meng J, Guo X M, Li S M, Li C Y, De Wit P, Que H Y, Wu F C, Wang W, Qi H G, Xu F, Cong R H, Huang B Y, Li Y X, Wang T, Tanh X Y, Liu S, Li B S, Shi R H, Liu Y L, Bu C, Zhang C, He W M, Zhao S C, Li H J, Zhang S D, Zhang L L, Zhang G F. 2018. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nature Ecology & Evolution, 2 (11): 1751–1760, https://doi.org/10.1038/s41559-018-0668-2.

    Article  Google Scholar 

  • Liu M, Peng J, Xu D Q, Zheng R, Li F E, Li J L, Zuo B, Lei M G, Xiong Y Z, Deng C Y, Jiang S W. 2008. Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in large white × meishan F2 pig populations. Biochemical Genetics, 46 (11-12): 720–732, https://doi.org/10.1007/s10528-008-9187-1.

    Article  Google Scholar 

  • Lo Presti R, Lisa C, Di Stasio L. 2010. Molecular genetics in aquaculture. Italian Journal of Animal Science, 8 (3): 299–313, https://doi.org/10.4081/ijas.2009.299.

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20 (9): 1297–1303, https://doi.org/10.1101/gr.107524.110.

    Article  Google Scholar 

  • Morin P A, Luikart G, Wayne R K, the SNP Workshop Group. 2004. SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution, 19 (4): 208–216, https://doi.org/10.1016/j.tree.2004.01.009.

    Article  Google Scholar 

  • Park Y J, Lee J K, Kim N S. 2009. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules, 14 (11): 4546–4569, https://doi.org/10.3390/molecules14114546.

    Article  Google Scholar 

  • Prudence M, Moal J, Boudry P, Daniel J Y, Quéré C, Jeffroy F, Mingant C, Ropert M, Bédier E, Van Wormhoudt A, Samain J F, Huvet A. 2006. An amylase gene polymorphism is associated with growth differences in the Pacific cupped oyster Crassostrea gigas. Animal Genetics, 37 (4): 348–351, https://doi.org/10.1111/j.1365-2052.2006.01481.x.

    Article  Google Scholar 

  • Qi H G, Song K, Li C Y, Wang W, Li B S, Li L, Zhang G F. 2017. Construction and evaluation of a high-density SNP array for the Pacific oyster ( Crassostrea gigas ). PLoS One, 12 (3): e0174007, https://doi.org/10.1371/journal.pone.0174007.

    Article  Google Scholar 

  • She Z C, Li L, Qi H G, Song K, Que H Y, Zhang G F. 2015. Candidate gene polymorphisms and their association with glycogen content in the pacific oyster Crassostrea gigas. PLoS One, 10 (5): e0124401, https://doi.org/10.1371/journal.pone.0124401.

    Article  Google Scholar 

  • Wang J F, Qi H G, Li L, Que H Y, Wang D, Zhang G F. 2014. Discovery and validation of genic single nucleotide polymorphisms in the Pacific oyster Crassostrea gigas. Molecular Ecology Resources, 15 (1): 123–135, https://doi.org/10.1111/1755-0998.12278.

    Article  Google Scholar 

  • Wu Y, Pi J S, Pan A L, Pu Y J, Du J P, Shen J, Liang Z H, Zhang J R. 2012. An SNP in the MyoD1 gene intron 2 associated with growth and carcass traits in three duck populations. Biochemical Genetics, 50 (11-12): 898–907, https://doi.org/10.1007/s10528-012-9530-4.

    Article  Google Scholar 

  • Xue M, Zan L S, Gao L, Wang H B. 2011. A novel polymorphism of the myogenin gene is associated with body measurement traits in native Chinese breeds. Genetics & Molecular Research, 10 (4): 2721–2728, https://doi.org/10.4238/2011.November.4.6.

    Article  Google Scholar 

  • Zhang G F, Fang X D, Guo X M, Li L, Luo R B, Xu F, Yang P C, Zhang L L, Wang X T, Qi H G, Xiong Z Q, Que H Y, Xie Y L, Holland P W H, Paps J, Zhu Y P, Wu F C, Chen Y X, Wang J F, Peng C F, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z Y, Zhu Q H, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y J, Domazet-Loso T, Du Y S, Sun X Q, Zhang S D, Liu B H, Cheng P Z, Jiang X T, Li J, Fan D D, Wang W, Fu W J, Wang T, Wang B, Zhang J B, Peng Z Y, Li Y, Li N, Wang J P, Chen M S, He Y, Tan F J, Song X R, Zheng Q M, Huang R L, Yang H L, Du X D, Chen L, Yang M, Gaffney P M, Wang S, Luo L H, She Z C, Ming Y, Huang W, Zhang S, Huang B Y, Zhang Y, Qu T, Ni P X, Miao G Y, Wang J Y, Wang Q, Steinberg C E W, Wang H Y, Li N, Qian L M, Zhang G J, Li Y R, Yang H M, Liu X, Wang J, Yin Y, Wang J. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490 (7418): 49–54, https://doi.org/10.1038/nature11413.

    Article  Google Scholar 

  • Zhong X X, Li Q, Yu H, Kong L F. 2013. Development and Validation of single-nucleotide polymorphism markers in the pacific oyster, Crassostrea gigas, using high-resolution melting analysis. Journal of the World Aquaculture Society, 44 (3): 455–465, https://doi.org/10.1111/jwas.12044.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Bao.

Additional information

Supported by the National Key R&D Program of China (No. 2018YFD0901400), the National Natural Science Foundation of China (No. 31672678), the Ningbo Municipal Science and Technology International Cooperation Research Projects (No. 2016D10017), and the Zhejiang Provincial Major Program of Science and Technology (No. 2016C02055-9)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Li, L., Li, C. et al. bHLH genes polymorphisms and their association with growth traits in the Pacific oyster Crassostrea gigas. J. Ocean. Limnol. 38, 862–868 (2020). https://doi.org/10.1007/s00343-019-9070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9070-4

Keyword

Navigation