Local-scale patterns of genetic variation in coexisting floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum in Donghu Lake

Abstract

Coexisting floating-leaved and submerged plants experience similar environmental changes but may evolve different patterns of genetic variation. To compare local-scale genetic variation, we collected samples of floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum coexisting in a disturbed urban lake in China. At the subpopulation level, using microsatellites, M. spicatum had higher clonal diversity than N. peltata. M. spicatum had 28.4% multilocus genotypes (MLGs) shared between subpopulations, but N. peltata had only one MLG shared between two adjacent subpopulations. N. peltata displayed more genetic variation between subpopulations than within subpopulations, but the reverse was true for M. spicatum. Principal components and Bayesian cluster analyses showed that individuals from each subpopulation of N. peltata tended to have relatively close genetic relationships. For M. spicatum, individuals from each subpopulation were genetically scattered with those from other subpopulations. Our results imply that in unpredictable adverse environments M. spicatum may be less subjected to local-deme extinction than N. peltata because of genetically diverse clones at the subpopulation level. This characteristic means that following adverse events, M. spicatum may rapidly restore subpopulation distributions via re-colonization and intense gene flow among subpopulations.

This is a preview of subscription content, access via your institution.

References

  1. Aiken S G, Newroth P R, Wile I. 1979. The biology of Canadian weeds: 34. Myriophyllum spicatum L. Canadian Journal of Plant Science, 59(1): 201–215.

    Article  Google Scholar 

  2. Andreakis N, Kooistra W H C F, Procaccini G. 2009. High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes. Molecular Ecology, 18(2): 212–226.

    Article  Google Scholar 

  3. Barrat-Segretain M H. 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio, 123(1): 13–37.

    Article  Google Scholar 

  4. Barrett S C H, Eckert C G, Husband B C. 1993. Evolutionary processes in aquatic plant populations. Aquatic Botany, 44(2–3): 105–145.

    Article  Google Scholar 

  5. Bornette G, Puijalon S. 2010. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 73(1): 1–14.

    Article  Google Scholar 

  6. Canale C I, Henry P Y. 2010. Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Climate Research, 43: 135–147.

    Article  Google Scholar 

  7. Cao Q J, Liu N, Wang L. 2016. Relative response to mechanical stress of co-existing aquatic species, floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum. Pakistan Journal of Botany, 48(3): 935–943.

    Google Scholar 

  8. Cao Q J, Mei F F, Wang L. 2017. Population genetic structure in six sympatric and widespread aquatic plants inhabiting diverse lake environments in China. Ecology and Evolution, 7(15): 5 713–5 723.

    Article  Google Scholar 

  9. Darbyshire S J, Francis A. 2008. The biology of invasive alien plants in Canada. 10. Nymphoides peltata (S. G. Gmel.) Kuntze. Canadian Journal of Plant Science, 88(4): 811–829.

    Article  Google Scholar 

  10. Dorken M E, Eckert C G. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodonverticillatus (Lythraceae). Journal of Ecology, 89(3): 339–350.

    Article  Google Scholar 

  11. Dufresne F, Stift M, Vergilino R, Mable B K. 2014. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Molecular Ecology, 23(1): 40–69.

    Article  Google Scholar 

  12. Ehlers A, Worm B, Reusch T B H. 2008. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Marine Ecology Progress Series, 355: 1–7.

    Article  Google Scholar 

  13. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the SOFTWARE STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2 611–2 620.

    Article  Google Scholar 

  14. Flora of China Editorial Committee. 2018. Flora of China. http://www.iplant.cn. Accessed on 2018-04-09.

  15. Hamrick J L, Godt M J W. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1345): 1 291–1 298.

    Article  Google Scholar 

  16. Harrison S, Hastings A. 1996. Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology & Evolution, 11(4): 180–183.

    Article  Google Scholar 

  17. Havel J E, Kovalenko K E, Thomaz S M, Amalfitano S, Kats L B. 2015. Aquatic invasive species: challenges for the future. Hydrobiologia, 750(1): 147–170.

    Article  Google Scholar 

  18. Hughes A R, Stachowicz J J. 2004. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America, 101(24): 8 998–9 002.

    Article  Google Scholar 

  19. Li W. 2014. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquatic Botany, 118: 62–70.

    Article  Google Scholar 

  20. Liao Y Y, Yue X L, Guo Y H, Gituru W R, Wang Q F, Chen J M. 2013. Genotypic diversity and genetic structure of populations of the distylous aquatic plant Nymphoides peltata (Menyanthaceae) in China. Journal of Systematics and Evolution, 51(5): 536–544.

    Article  Google Scholar 

  21. Maclean I M D, Wilson R J. 2011. Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 108(30): 12 337–12 342.

    Article  Google Scholar 

  22. Madgwick G, Emson D, Sayer C D, Willby N J, Rose N L, Jackson M J, Kelly A. 2011. Centennial-scale changes to the aquatic vegetation structure of a shallow eutrophic lake and implications for restoration. Freshwater Biology, 56(12): 2 620–2 636.

    Article  Google Scholar 

  23. Massa S I, Paulino C M, Serrào E A, Duarte C M, Arnaud-Haond S. 2013. Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecology, 13: 39, https://doi.org/10.1186/1472-6785-13-39.

    Article  Google Scholar 

  24. Meirmans P G, van Tienderen P H. 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular EcologyNotes, 4(4): 792–794.

    Google Scholar 

  25. Nikolić L, Čobanović K, Lazić D. 2007. Nymphoides peltata (Gmel.) Kuntze, Myriophyllum spicatum L. and Ceratophyllum demersum L. biomass dynamics in Lake Provala (the Vojvodina Province, Serbia). Central European Journal of Biology, 2(1): 156–168.

    Google Scholar 

  26. Peakall R, Smouse P E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19): 2 537–2 539.

    Article  Google Scholar 

  27. Phan T T H, De Raeymaeker M, Luong Q D, Triest L. 2017. Clonal and genetic diversity of the threatened seagrass Halophila beccarii in a tropical lagoon: resilience through short distance dispersal. Aquatic Botany, 142: 96–104.

    Article  Google Scholar 

  28. Philbrick C T, Les D L. 1996. Evolution of aquatic angiosperm reproductive systems: what is the balance between sexual and asexual reproduction in aquatic angiosperms? BioScience, 46(11): 813–826.

    Article  Google Scholar 

  29. Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945–959.

    Google Scholar 

  30. Qiu D R, Wu Z B, Liu B Y, Deng J Q, Fu G P, He F. 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecological Engineering, 18(2): 147–156.

    Article  Google Scholar 

  31. Rejmankova E. 2011. The role of macrophytes in wetland ecosystems. Journal of Ecology and Environment, 34(4): 333–345.

    Article  Google Scholar 

  32. Reusch T B H, Ehlers A, Hämmerli A, Worm B. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America, 102(8): 2 826–2 831.

    Article  Google Scholar 

  33. Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81(24): 8 014–8 018.

    Article  Google Scholar 

  34. Sculthorpe C D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.

    Google Scholar 

  35. Sherman C D H, Ayre D J. 2008. Fine-scale adaptation in a clonal sea anemone. Evolution, 62(6): 1 373–1 380.

    Article  Google Scholar 

  36. Sherman C D H, York P H, Smith T M, Macreadie P I. 2016. Fine-scale patterns of genetic variation in a widespread clonal seagrass species. Marine Biology, 163(4): 82, https://doi.org/10.1007/s00227-016-2861-7.

    Article  Google Scholar 

  37. Smith D H, Madsen J D, Dickson K L, Beitinger T L. 2002. Nutrient effects on autofragmentation of Myriophyllum spicatum. Aquatic Botany, 74(1): 1–17.

    Article  Google Scholar 

  38. Uesugi R, Tani N, Goka K, Nishihiro J, Tsumura Y, Washitani I. 2005. Isolation and characterization of highly polymorphic microsatellites in the aquatic plant, Nymphoides peltata (Menyanthaceae). Molecular EcologyNotes, 5(2): 343–345.

    Google Scholar 

  39. Wang Y, Wang Q F, Guo Y H, Barrett S C H. 2005. Reproductive consequences of interactions between clonal growth and sexual reproduction in Nymphoides peltata: a distylous aquatic plant. New Phytologist, 165(1): 329–336.

    Article  Google Scholar 

  40. Wingfield J C, Kelley J P, Angelier F, Chastel O, Lei F M, Lynn S E, Miner B, Davis J E, Li D M, Wang G. 2011. Organism-environment interactions in a changing world: a mechanistic approach. Journal of Ornithology, 152(S1): 279–288.

    Article  Google Scholar 

  41. Wu Z G, Yu D, Li X, Xu X W. 2016. Influence of geography and environment on patterns of genetic differentiation in a widespread submerged macrophyte, Eurasian watermilfoil (Myriophyllum spicatum L., Haloragaceae). Ecology and Evolution, 6(2): 460–468.

    Article  Google Scholar 

  42. Wu Z G, Yu D, Xu X W. 2013. Development of microsatellite markers in the hexaploid aquatic macrophyte, Myriophyllum spicatum (Haloragaceae). Applications in Plant Sciences, 1(2): 1200230. https://doi.org/10.3732/apps.1200230.

    Article  Google Scholar 

  43. Yuan Y Y, Wang Q F, Chen J M. 2013. Development of SSR markers in aquatic plant Nymphoides peltata (Menyanthaceae) based on information from transcriptome sequencing. Plant Science Journal, 31 (5): 485–492. (in Chinese with English abstract)

    Article  Google Scholar 

  44. Zhou J, Chen J K. 1996. Phytocoenological studies on floating-leaved anchored aquatic plants in Futouhu Lake, Hubei Province—II. The structure of Comm. Nymphoides peltata. Acta Hydrobiologica Sinica, 20(1): 49–56. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qianjin Cao.

Additional information

Supported by the National Natural Science Foundation of China (No. 31600325)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Hu, F. & Liu, N. Local-scale patterns of genetic variation in coexisting floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum in Donghu Lake. J. Ocean. Limnol. 38, 1825–1834 (2020). https://doi.org/10.1007/s00343-019-9068-y

Download citation

Keywords

  • aquatic plants
  • life forms
  • microsatellites
  • clonal diversity
  • eutrophic lake