Skip to main content
Log in

Contribution of surface wave-induced vertical mixing to heat content in global upper ocean

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Compared with observations, the simulated upper ocean heat content (OHC) determined from climate models shows an underestimation bias. The simulation bias of the average annual water temperature in the upper 300 m is 0.2°C lower than the observational results. The results from our two numerical experiments, using a CMIP5 model, show that the non-breaking surface wave-induced vertical mixing can reduce this bias. The enhanced vertical mixing increases the OHC in the global upper ocean (65°S–65°N). Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30% to 0.14°C. The heat content increase is not directly induced by air-sea heat fluxes during the simulation period, but is the legacy of temperature increases in the first 150 years. During this period, additional vertical mixing was initially included in the climate model. The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat fluxes in the first 150 years. This increase in air-sea heat fluxes warms the upper ocean by 0.05–0.06°C. The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data supporting this article are available by any users from http://data.fio.org.cn/qiaofl/CSY-JGR-2018.

References

  • Abraham J P, Baringer M, Bindoff N L, Boyer T, Cheng L J, Church J A, Conroy J L, Domingues C M, Fasullo J T, Gilson J, Goni G, Good S A, Gorman J M, Gouretski V, Ishii M, Johnson G C, Kizu S, Lyman J M, Macdonald A M, Minkowycz W J, Moffitt S E, Palmer M D, Piola A R, Reseghetti F, Schuckmann K, Trenberth K E, Velicogna I, Willis J K. 2013. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys., 51(3): 450–483.

    Article  Google Scholar 

  • AchutaRao K M, Ishii M, Santer B D, Gleckler P J, Taylor K E, Barnett T P, Pierce D W, Stouffer R J, Wigley T M. 2007. Simulated and observed variability in ocean temperature and heat content. Proc. Natl. Acad. Sci. USA, 104(26): 10 768–10 773.

    Article  Google Scholar 

  • Balmaseda M A, Trenberth K E, Kallén E. 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett, 40(9): 1 754–1 759.

    Article  Google Scholar 

  • Chen S Y, Qiao F L, Huang C J, Song Z Y. 2018. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions. J. Geophys. Res.: Oceans, 123(4): 2 934–2 944, https://doi.org/10.1002/2017JC013038.

    Article  Google Scholar 

  • Church J A, White N J, Arblaster J M. 2005. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438(7064): 74–77.

    Article  Google Scholar 

  • Delworth T L, Ramaswamy V, Stenchikov G L. 2005. The impact of aerosols on simulated ocean temperature and heat content in the 20th century. Geophys. Res. Lett., 32(24): L24709.

    Article  Google Scholar 

  • Domingues C M, Church J A, White N J, Gleckler P J, Wijffels S E, Barker P M, Dunn J R. 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453(7198): 1 090–1 093.

    Article  Google Scholar 

  • Fan Y L, Griffies S M. 2014. Impacts of parameterized langmuir turbulence and nonbreaking wave mixing in global climate simulations. J. Climate, 27(12): 4 752–4 775.

    Article  Google Scholar 

  • Geoffroy O, Saint-Martin D, Olivié D J L, Voldoire A, Bellon G, Tytéca S. 2013. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26(6): 1 841–1 857.

    Article  Google Scholar 

  • Gleckler P J, AchutaRao K, Gregory J M, Santer S D, Taylor K E, Wigley T M L. 2006. Krakatoa lives: the effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys. Res. Lett.33(17): L17702.

    Article  Google Scholar 

  • Good S A, Martin M J, Rayner N A. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res.: Oceans, 118(12): 6 704–6 716.

    Article  Google Scholar 

  • Gregory J M, Banks H T, Stott P A, Lowe J A, Palmer M D. 2004. Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett., 31(15): L15312.

    Article  Google Scholar 

  • Huang C J, Qiao F L, Dai D J. 2014. Evaluating CMIP5 simulations of mixed layer depth during summer. J. Geophys. Res.: Oceans, 119(4): 2 568–2 582.

    Article  Google Scholar 

  • Huang C J, Qiao F L, Shu Q, Song Z Y. 2012. Evaluating austral summer mixed-layer response to surface wave-induced mixing in the Southern Ocean. J. Geophys. Res.: Oceans, 117(C11): C00J18.

    Google Scholar 

  • Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci., 54(7):811–829.

    Article  Google Scholar 

  • Kuhlbrodt T, Gregory J M. 2012. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39(18): L18608.

    Article  Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I, Garcia H E, Baranova O K, Zweng M M, Johnson D R. 2010. World ocean atlas 2009, volume 1: temperature. In: Levitus S ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington DC, USA. 184p.

    Google Scholar 

  • Meehl G A, Arblaster J M, Fasullo J T, Hu A X, Trenberth K E. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1(7): 360–364.

    Article  Google Scholar 

  • Palmer M D, McNeall D J. 2014. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett, 9(3): 034016.

    Article  Google Scholar 

  • Qiao F L, Song Z Y, Bao Y, Song Y J, Shu Q, Huang C J, Zhao W. 2013. Development and evaluation of an earth system model with surface gravity waves. J. Geophys. Res.: Oceans, 118(9): 4 514–4 524.

    Article  Google Scholar 

  • Rayner N A, Brohan P, Parker D E, Folland C K, Kennedy J J, Vanicek M, Ansell T J, Tett S F B. 2006. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J. Climate, 19(3): 446–469.

    Article  Google Scholar 

  • Roberts C D, Palmer M D, McNeall D, Collins M. 2015. Quantifying the likelihood of a continued hiatus in global warming. Nat. Climate Change, 5(4): 337–342.

    Google Scholar 

  • Stoney L, Walsh K J, Thomas S, Spence P, Babanin A V. 2018. Changes in ocean heat content caused by wave-induced mixing in a high-resolution ocean model. J. Phys. Oceanogr, 48(5): 1 139–1 150.

    Article  Google Scholar 

  • Von Schuckmann K, Palmer M D, Trenberth K E, Cazenave T A, Chambers C D, Champollion N, Hansen J, Josey S A, Loeb N, Mathieu P P, Meyssignac B, Wild M. 2016. An imperative to monitor earth’s energy imbalance. Nat. Climate Change, 6(2): 138–144.

    Article  Google Scholar 

  • Williams R G, Roussenov V, Lozier M S, Smith D. 2015. Mechanisms of heat content and thermocline change in the subtropical and subpolar North Atlantic. J. Climate, 28(24): 9 803–9 815.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangli Qiao.

Additional information

Supported by the International Cooperation Project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology, China (No. 2016YFE0101400), the Basic Scientific Fund for National Public Research Institutes of China (No. 2018S03), the National Natural Science Foundation of China (Nos. 41821004, 41776038), the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606405), the International Cooperation Project of Indo-Pacific Ocean Environment Variation and Air-Sea Interaction (No. GASI-IPOVAI-05), the IOC/WESTPAC OFS Project, the AoShan Talents Cultivation Excellent Scholar Program Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2017ASTCP-ES04), and the China-Korea Cooperation Project on the Prediction of North-West Pacific Climate Change

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Qiao, F., Huang, C. et al. Contribution of surface wave-induced vertical mixing to heat content in global upper ocean. J. Ocean. Limnol. 38, 307–313 (2020). https://doi.org/10.1007/s00343-019-9003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9003-2

Keyword

Navigation