Skip to main content
Log in

Spatiotemporal shoreline change in Boushehr Province coasts, Iran

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Since coastal areas have highly dynamic nature and are one of the most beneficial regions of civilizations, it is of great significance to understand their characteristics and behavior. Changes in shorelines in the form of accretion and erosion can leave devastating effects on businesses and cities located along the shore. In this study, we statistically calculated the tendency of shoreline changes by processing and analyzing historical satellite images of Boushehr Province, Iran. Results show that these shores have experienced both sedimentation and erosion in the past 30 years. Net shoreline movement presents more than 350 m of erosion and 650 m of accretion, which are corresponded to change rates of almost 12 and 22 m/a, respectively. Statistics of shoreline changes are calculated from regression methods including end point rate, linear regression rate, weighted linear regression, and least median of squares. The best-performed method is applied to predict the shoreline position in 2050 and 2100. Potential locations of excessive changes are identified for the predicted shorelines, which should be dealt with properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The Landsat satellite images that support the findings of this study are available in USGS’s Earth Explorer website https://earthexplorer.usgs.gov.

Abbreviations

DSAS:

digital shoreline analysis system

EPR:

end point rate

LRR:

linear regression rate

LMS:

least median of squares

MAPE:

mean absolute percentage error

NSM:

net shoreline movement

SCE:

shoreline change envelope

USGS:

the United States Geological Survey

WLR:

weighted linear regression

References

  • Adamo F, De Capua C, Filianoti P, Lanzolla A M L, Morello R. 2014. A coastal erosion model to predict shoreline changes. Measurement, 47: 734–740.

    Article  Google Scholar 

  • Addo K A, Walkden M, Mills J P. 2008. Detection, measurement and prediction of shoreline recession in Accra, Ghana. ISPRS Journal of Photogrammetry and Remote Sensing, 63 (5): 543–558.

    Article  Google Scholar 

  • Banno M, Kuriyama Y. 2014. Prediction of future shoreline change with sea-level rise and wave climate change at Hasaki, Japan. Coastal Engineering, 34: 1–10.

    Google Scholar 

  • Castelle B, Guillot B, Marieu V, Chaumillon E, Hanquiez V, Bujan S, Poppeschi C. 2018. Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France. Estuarine Coastal and Shelf Science, 200: 212–223.

    Article  Google Scholar 

  • Chalabi A, H, I, Karamali M, Karthigeyan V, Masita M. 2006. Monitoring shoreline change using IKONOS image and aerial photographs: a case study of Kuala Terengganu area, Malaysia. In: Proceedings of the ISPRS Mid-Term Symposium Proceeding. Enschede, Netherlands.

    Google Scholar 

  • Chen L C, Rau J Y. 1998. Detection of shoreline changes for tideland areas using multi-temporal satellite images. International Journal of Remote Sensing, 19 (17): 3 383–3 397.

    Article  Google Scholar 

  • Chen W W, Chang H K. 2009. Estimation of shoreline position and change from satellite images considering tidal variation. Estuarine Coastal and Shelf Science, 84 (1): 54–60.

    Article  Google Scholar 

  • Ciritci D, Türk T. 2019. Automatic detection of shoreline change by geographical information system (GIS) and remote sensing in the Göksu Delta, Turkey. Journal of the Indian Society of Remote Sensing, 47 (2): 233–243.

    Article  Google Scholar 

  • Davidson M A, Lewis R P, Turner I L. 2010. Forecasting seasonal to multi-year shoreline change. Coastal Engineering, 57 (6): 620–629.

    Article  Google Scholar 

  • De Myttenaere A, Golden B, Le Grand B, Rossi F. 2016. Mean absolute percentage error for regression models. Neurocomputing, 192: 38–48.

    Article  Google Scholar 

  • Douglas B C, Crowell M. 2000. Long-term shoreline position prediction and error propagation. Journal of Coastal Research, 16 (1): 145–152.

    Google Scholar 

  • Ebadati N, Razavian F, Khoshmanesh B. 2018. Investigating the trend of coastline changes in the port of Asalouyeh to Bandar Deir using RS and GIS techniques. Iranian Journal of Echohydrology, 5 (2): 653–662.

    Google Scholar 

  • Genz A S, Fletcher C H, Dunn R R, Frazer L N, Rooney J J. 2007. The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. Journal of Coastal Research, 23 (1): 87–105.https://doi.org/10.2112/05-0521.1.

    Article  Google Scholar 

  • Guariglia A, Buonamassa A, Losurdo A, Saladino R, Trivigno M L, Zaccagnino A, Colangelo A. 2006. A multisource approach for coastline mapping and identification of shoreline changes. Annals of Geophysics, 49 (1): 295–304.

    Google Scholar 

  • Kaewpoo N, Nakhapakorn K, Pumijunong N, Silapathong C. 2012. The integration of GIS and mathematical model for shoreline prediction. In: The 33rd Asian Conference on Remote Sensing.

    Google Scholar 

  • Kalantari N, Sajadi Z, Makvandi M, Keshavarzi M R. 2012. Chemical properties of soil and groundwater of the Assaluyeh alluvial plain with emphasis on heavy metals contamination. J Geotechnical Geology (Applied Geology), 7 (4): 333–342.

    Google Scholar 

  • Kaminsky G M, Buijsman M C, Ruggiero P. 2000. Predicting shoreline change at decadal scale in the Pacific Northwest, USA. In: 7 th International Conference on Coastal Engineering. ASCE, Sydney, Australia. p.2 400–2 413.

    Google Scholar 

  • Kermani S, Boutiba M, Guendouz M, Guettouche M S, Khelfani D. 2016. Detection and analysis of shoreline changes using geospatial tools and automatic computation: Case of jijelian sandy coast (East Algeria). Ocean & Coastal Management, 132: 46–58.

    Article  Google Scholar 

  • Kuleli T, Guneroglu A, Karsli F, Dihkan M. 2011. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38 (10): 1 141–1 149.

    Article  Google Scholar 

  • Leont’yev I O. 2012. Predicting shoreline evolution on a centennial scale using the example of the Vistula (Baltic) spit. Oceanology, 52 (5): 700–709.

    Article  Google Scholar 

  • Maiti S, Bhattacharya A K. 2009. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257 (1–4): 11–23.

    Article  Google Scholar 

  • Mani J S, Murali K, Chitra K. 1997. Prediction of shoreline behaviour for Madras, India-a numerical approach. Ocean Engineering, 24 (10): 967–984.

    Article  Google Scholar 

  • McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17 (7): 1 425–1 432.

    Article  Google Scholar 

  • Miller J K, Dean R G. 2004. A simple new shoreline change model. Coastal Engineering, 51 (7): 531–556.

    Article  Google Scholar 

  • Mills J P, Buckley S J, Mitchell H L, Clarke P J, Edwards S J. 2005. A geomatics data integration technique for coastal change monitoring. Earth Surface Processes and Landforms, 30 (6): 651–664.

    Article  Google Scholar 

  • Mishra V N, Prasad R, Kumar P, Gupta D K, Agarwal S, Gangwal A. 2019. Assessment of spatio-temporal changes in land use/land cover over a decade (2000–2014) using earth observation datasets: A case study of Varanasi district, India. Iranian Journal of Science and Technology Transaction of Civil Engineering, 43 (S1): 383–401, https://doi.org/10.1007/s40996-018-0172-6

    Article  Google Scholar 

  • Moosavi L, Ab Ghafar N, Mahyuddin N. 2016. Investigation of thermal performance for Artia: a method overview. MATEC We b of Conference, 66: 00029.

    Article  Google Scholar 

  • Moussaid J, Fora A A, Zourarah B, Maanan M, Maanan M. 2015. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. Ocean Engineering, 102: 71–77.

    Article  Google Scholar 

  • Qiao G, Mi H, Wang W A, Tong X X, Li Z B, Li T, Liu S J, Hong Y. 2018. 55-year (1960–015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. International JournalofAppliedEarthObservationandGeoinformation, 68: 238–251.

    Google Scholar 

  • Richards J A. 2013. Remote Sensing Digital Image Analysis: An Introduction. 5th edn. Springer Heidelberg, New York.

  • Sami S, Soltanpour M, Lak R. 2010. Sedimentology of the west coastlines of Nayband Bay and the impact of carbonate sediments on the sedimentation in Asaluyeh Fishery Port. Journal of Marine Engineering, 6 (11): 45–57.

    Google Scholar 

  • Santra A, Mitra D, Mitra S. 2011. Spatial modeling using high resolution image for future shoreline prediction along Junput Coast, West Bengal, India. Geo- Spatial Information Science, 14 (3): 157–163.

    Article  Google Scholar 

  • Scott D B. 2005. Encyclopaedia of Coastal Sciences. Springer, Netherlands.

    Google Scholar 

  • Singh A. 1989. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10 (6): 989–1 003.

    Article  Google Scholar 

  • Stive M J F, Aarninkhof S G J, Hamm L, Hanson H, Larson M, Wijnberg K M, Nicholls R R, Capobianco M. 2002. Variability of shore and shoreline evolution. Coastal Engineering, 47 (2): 211–235.

    Article  Google Scholar 

  • Stive M J F, Ranasinghe R, Cowell P. 2009. Sea level rise and coastal erosion. In: Kim Y C ed. Handbook of Coastal and Ocean Engineering. World Scientific, Los Angeles, USA. p.1 023–1 038.

    Chapter  Google Scholar 

  • Thieler E R, Himmelstoss E A, Zichichi J L, Ergul A. 2009. Digital Shoreline Analysis System (DSAS) version 4.0—An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008-1278

    Book  Google Scholar 

  • Current Version 4.3. U.S. Geological Survey.

  • Vitousek S, Barnard P L, Limber P L, Erikson L, Cole B. 2017. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. Journal of Geophysical Research: Earth Surface, 122 (4): 782–806.

    Google Scholar 

  • Winarso G, Judijanto A, Budhiman S. 2011. The potential application remote sensing data for coastal study. In: Paper Presented at the 22 nd Asian Conference on Remote Sensing. Singapore.

    Google Scholar 

  • Yamani M, Rahimi Harabadi S, Goudarzi Mehr S. 2011. Periodic changes of the east Strait of Hormuz shore line by remote sensing. Environmental Erosion Researches, Hormozgan University.

    Google Scholar 

  • Yamano H, Shimazaki H, Matsunaga T, Ishoda A, McClennen C, Yokoki H, Fujita K, Osawa Y, Kayanne H. 2006. Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology, 82 (3-4): 398–411.

    Article  Google Scholar 

  • Zeinali S, Dehghani M, Rastegar M A, Mojarrad M. 2017. Detecting shoreline changes in Chabahar bay by processing satellite images. Scientia Iranica, 24 (4): 1 802–1 809.

    Article  Google Scholar 

  • Zeinali S, Talebbeydokhti N, Saeidian M, Vosough S. 2016. Modeling of bed level changes in Larak Island. In: Proc. 18th Int. Conf. on Coastal and Ocean Eng., London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zeinali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinali, S., Talebbeydokhti, N. & Dehghani, M. Spatiotemporal shoreline change in Boushehr Province coasts, Iran. J. Ocean. Limnol. 38, 707–721 (2020). https://doi.org/10.1007/s00343-019-8373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8373-9

Keyword

Navigation